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Abstract. The dilatancy/contractancy of soil is of particular importance
for compaction, consolidation, liquefaction, etc. Interestingly, constitu-
tive relations are often unsatisfactory in modelling volume changes in
the sense that their predictions deviate considerably from each other.
This scatter is pronounced in problems with stress rotation. Therefore,
in this paper some selected constitutive relations are investigated with
respect to their performance at stress rotation. The obtained numerical
simulations are compared with each other and also with experimental
results from the 1γ2ε and the hollow cylinder apparatuses.
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1. Introduction
Soil is often exposed to a rotation of the principal stress
axes due to engineering work. For instance, in the case of
a shallow foundation with only a vertical load the stress in
the soil rotates (except at the symmetry axis). Furthermore,
the subsoil of offshore platforms is exposed to rotation of
the principal stress axes due to wave action, as Ishihara and
Towhata [1983] showed. Another example is deep vibro-
compaction. The vibroflot device implies a combination
of compression and shear waves, Fellin [2000], which also
induce principal stress rotations in the soil. As compaction
is the main issue in this case, a material model used in a
computation must predict volume changes due to principal
stress rotations. Its effect on soil behaviour and the corre-
sponding modelling have been investigated by Gutierrez
and Ishihara [2000], Gutierrez et al. [1991a,b, 1993], Gutier-
rez and Vardoulakis [2007], Gutierrez and Wang [2009],
Gutierrez et al. [2009], Pradel et al. [1990].

Conventional laboratory tests such as triaxial and oe-
dometer tests are so-called rectilinear extensions and,
hence, do not include rotation of principal stress axes.
However, some special apparatuses imply rotation of the
principal axes (e.g. the hollow cylinder apparatus, Ishihara
and Towhata [1983], the directional shear cell by Arthur
et al. [1980], or the 1γ2ε apparatus by Joer et al. [1992]). In
experiments with these apparatuses a volumetric change
of the sample is observed, although the stress invariants
remain constant.

Deformations induced by stress rotation can be calcu-
lated with advanced constitutive models. However, it turns
out that the obtained results deviate from each other within
a large range, although the models behave similarly in tri-
axial and even simple shear tests. Therefore, the simulation
of deformations induced by stress rotation turns out to be
important for the evaluation and verification of advanced
constitutive models. In this paper, we perform numerical
simulation of stress rotation using some selected constitu-
tive models (elasto-plastic, hypoplasic and barodetic ones)
and we compare the obtained results with results from the
1γ2ε apparatus and from hollow cylinders.

2. Constitutive models
The following constitutive models are investigated: Hard-
ening Soil with small-strain stiffness, Benz [2007] (HSS),
Sanisand, Taiebat and Dafalias [2008], Hypoplasticity,
Kolymbas [1985, 1991] in the formulation of von Wolf-
fersdorff [1996] with and without the extension of Niemunis
and Herle [1997] for intergranular strain (Hypo i.s.) and
Barodesy, Kolymbas [2015].

2.1. Hardening Soil with small-strain
stiffness

Hardening Soil is an elastoplastic constitutive relation
with shear and compression hardening. It does not use the
void ratio e as a state variable. Hence, it does not include the
concept of critical state soil mechanics.

The model predicts a decreasing stiffness for initial load-
ing, due to hardening. For a calculation starting from an
isotropic state the yield surface coincides with the isotropic
axis. With ongoing shearing the yield surface is inflated until
it reaches the Mohr-Coulomb yield surface. In the case of
unloading, as for the reloading, the response is elastic until
the yield surface is reached again.

To realistically describe hydrostatic loading, the model
uses a cap. The small-strain stiffness is introduced with a
small-strain overlay into the model. For small-strain cy-
cles the shear stiffness depends only on the strain history,
whereas for larger strains it is stress-dependent.

2.2. Sanisand
Sanisand is an elastoplastic model that incorporates the

concept of critical state soil mechanics and of bounding sur-
face plasticity. It uses a narrow wedge that forms the yield
surface and two further surfaces in the stress space. They
define a limit surface for admissible stress states, as well as a
dilatancy surface which determines the plastic strain rate.

The shape of these surfaces is the same as the critical
state surface, however, their size depends on the actual void
ratio. For dense soil (in the sense of critical state theory)
the bounding surface in principal stress space comprises
the critical state surface, and the dilatancy surface is nested
therein. For loose samples the bounding surface is smaller,
and the dilatancy surface is larger than the critical state sur-
face. For critical states the bounding and dilatancy surfaces
coincide with the critical one.

2.3. Hypoplasticity
Hypoplasticity uses a rate equation to calculate the ob-

jective stress rate T̊ and does not distinguish between elastic
and plastic deformations. Hence, Hypoplasticity needs nei-
ther yield surface nor plastic potential. In general, Hypoplas-
ticity can be written as

T̊ = h(T ,D , . . . ) =L : D +N‖D‖ . (1)

Here, L denotes a fourth-order tensor for the linear term
and N a second order tensor for the nonlinear term of the
hypoplastic function h. Due to the linear and the nonlinear
terms, the stiffness for loading and unloading is different.
The function h is homogeneous of degree n in stress, T , i.e.
the stiffness is stress-dependent, and positive homogeneous
of degree one in the rate of deformation, D , i.e. Hypoplastic-
ity is rate-independent. Furthermore, in all recent versions
the void ratio e is an additional variable and this enables to
incorporate the concepts of critical state soil mechanics.

2.4. Barodesy
Barodesy is a constitutive model recently introduced by

Kolymbas [2012]. It is based on the asymptotic behaviour of
soil and on critical state soil mechanics. Just like Hypoplas-
ticity, Barodesy needs neither yield surface nor plastic po-
tential and can be written as a single tensorial equation.

2.5. Calibration and comparison
To compare the different models initially various labo-

ratory tests are computed: a drained triaxial test, a simple
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Table 1. Material parameters of Sanisand for Toyoura
Sand Taiebat and Dafalias [2008]

G0 K0 αc
c c e0 λ ξ nd

125 kPa 150 kPa 1.2 0.712 0.934 0.019 0.7 2.1

Ad nb h0 ch pr ρc θ X

0.4 1.25 36.96 0.987 5.5 MPa 0.37 0.18 0.8

Table 2. Material parameters of Hardening Soil Small
(calibrated for Toyoura Sand from Verdugo and Ishi-
hara [1996])

E ref
50 E ref

oed E ref
ur m c ϕ ψ

30 MPa 30 MPa 120 MPa 0.6 0 kPa 33° 4°

νur pref K nc
0 R f σTension E ref

0 γ0.7

0.2 100 kPa 0.46 0.9 0 kPa 300 MPa 0.0002

Table 3. Material parameters of Hypoplasticity in the
version of von Wolffersdorff, Herle [1997]

ϕc hs n ed0 ec0 ei0 α β

30° 2.6 GPa 0.27 0.61 0.98 1.10 0.18 1.00

Table 4. Material parameters of Barodesy (prelimi-
nary calibration for Toyoura Sand from Verdugo and
Ishihara [1996])

ϕc c2 c3 c4 c5 ec0 emin

30° 1.3 −1.5 2 MPa 40 0.93 0.55

shear test with constant volume and a simple shear test with
constant normal stress are simulated with Toyoura sand
by Verdugo and Ishihara [1996]. The material parameters
for the calculation can be seen in Tables 1, 2, 3 and 4. For
Sanisand and Hypoplasticity parameters from literature
(Taiebat and Dafalias [2008] and Herle [1997]) are used.
Hardening Soil and Barodesy are calibrated with results of a
triaxial test from Verdugo and Ishihara [1996].

The consolidation pressure of the triaxial test is 100 kPa
and the initial void ratio e0 is 0.831. The results of the nu-
merical computation can be seen in Figure 1. Taking into ac-
count the experimental scatter, Schwiteilo and Herle [2017],
all models perform well.

In the simple shear test with constant volume the sample
is loaded with a vertical load of 100 kPa, the lateral pressure
is set to 50 kPa (which corresponds to a K0-state). The initial
void ratio is the same as in the triaxial test (e0 = 0.831). The
stress evolution is shown in Fig. 2. The differences are more
pronounced than for the drained triaxial test.
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Figure 1. Stress-strain and volumetric strain curves
for different constitutive models compared with a tri-
axial test in Verdugo and Ishihara [1996]
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Figure 2. Stress-strain curves for a simple shear test
with constant volume obtained with different consti-
tutive models

For the simple shear with a constant vertical stress the
initial conditions are the same as in the simple shear test
with constant volume. In Fig. 3 the results of this test are
shown. The differences of the stress are in the same order as
in the drained triaxial test. Note that the volumetric changes
almost coincide in this test.

3. Kinematic analysis of the
deformations

The deformation is described by equations 2 using the func-
tions g (t ) (in vertical direction) and h(t ) (in horizontal direc-
tion), while the shear deformation is described by f (t ), see
Fig. 4. In the simulation of the principal stress rotation the
out-of-plane normal stress σ33 is constant, and the strain in
direction x3 has to be calculated. The axial deformation in
this direction is described by the function d(t ), Fig. 5. The
other two shear deformations in the x1-x3 and the x2-x3-
planes are not of interest for the considered motion.
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Figure 3. Stress-strain and volumetric strain curves
for a simple shear test with constant normal stress ob-
tained with different constitutive models
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Figure 4. Deformation in two dimensions

A material point being at X at t = 0 moves to the position
x(t ) with

x1(t ) = X1 +X1h(t )+X2 f (t )

x2(t ) = X2 +X2g (t ) (2)

x3(t ) = X3 +X3d(t ) .

The corresponding stretching tensor D is obtained from

D = sym(∇ẋ) (3)

and reads

D =


ḣ

1+h
ḟ (1+h)−ḣ f

2(1+h)(1+g ) 0
ḟ (1+h)−ḣ f

2(1+h)(1+g )
ġ

1+g 0

0 0 ḋ
1+d

 (4)

and the spin tensor W is

W =

 0 ḟ (1+h)−ḣ f
2(1+h)(1+g ) 0

ḣ f − ḟ (1+h)
2(1+h)(1+g ) 0 0

0 0 0

 . (5)

The dot over a function denotes its time derivative.
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Figure 5. Kinematic of deformation in three dimen-
sions

The objective stress rate is expressed by means of the
Jaumann-Zaremba rate, Truesdell and Noll [1992]

T̊ = Ṫ −W T +T W , (6)

where Ṫ is the time derivative of the stress, T̊ is the objective
stress rate from the constitutive relation and T is the actual
Cauchy-stress.

For the simple shear test with constant volume the ho-
mogeneous deformation is kinematically prescribed. There-
fore the unknowns in the calculation are the time derivatives
ḟ (t ), ġ (t ), ḣ(t ) and ḋ(t ). They can be merged in the vector ȧ

ȧ(t ) =


ḟ (t )
ġ (t )
ḣ(t )
ḋ(t )

 . (7)

In stress controlled simulations for a given time step ∆t the
stress rate Ṫ (t ) is prescribed. For Hypoplasticity and Baro-
desy with the known actual stress state T (t ) the deformation
a(t ) and its estimated time derivative ȧ yield the stress rate
Ṫ (ȧ). The vector ȧ(t ) is determined with Newton’s method.

The stress T (t ) is given by (20) and the rotation angle θ =
tω, where ω is the angular velocity of the rotation. The rate
of the deformation functions ȧ(t ) is searched to determine
the deformation. In each time step ∆t from ti to ti +∆t we
know the stress rate

Ṫ (ti ) = T (ti +∆t )−T (ti )

∆t
= Ti+1 −Ti

∆t
= Ṫi (8)

and have to find the corresponding time rates of the defor-
mation functions ḟ , ġ , ḣ and ḋ from (4), which are collected
in the vector ȧ (7). We employ Newton’s method for this task
and denote each iteration with the superscript (n) and each
time step with the subscript i .

The first iteration n = 0 starts with an estimated ȧ(n)
i . With

this estimation D
(

ȧ(n)
i

)
and W

(
ȧ(n)

i

)
are calculated with (4)

and (5). At the beginning of the calculation a(t = 0) = 0
holds. The stress rate Ṫ (n)

i is calculated by

Ṫ (n)
i = T̊i

(
Ti ,D

(
ȧ(n)

i

)
,Ei

)
+W

(
ȧ(n)

i

)
Ti −Ti W

(
ȧ(n)

i

)
, (9)
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where Ei are internal variables at the beginning of the time
step, e.g. the void ratio ei . The residuum R (n)

i is the differ-
ence between the prescribed stress rate Ṫi and the obtained

stress rate Ṫ (n)
i

(
D

(
ȧ(n)

i

)
,W

(
ȧ(n)

i

)
,Ti ,Ei

)
in the nth iteration

of the i th time step. The new estimation of ȧ(n+1)
i is calcu-

lated by

ȧ(n+1)
i = ȧ(n)

i −
(
∂Ṫi

∂ȧi

(
ȧ(n)

i

))−1

R (n)
i . (10)

If the norm of R (n)
i is smaller than a given tolerance, ȧ(n)

i is
accepted and a time integration with this ȧi is performed

ai+1 = a(ti+1) = a(ti )+ ȧ∆t = ai + ȧi∆t . (11)

The deformation xi+1, the stress Ti+1 and the internal vari-
ables Ei+1 follow in a similar way.

Since the deformation also contains a rotation, a time in-
tegration of the stretching in the form of εi+1 = εi +Di∆t is
not correct. To get the correct logarithmic strain (also known
as true or Hencky strain) in the reference configuration, the
stretching has to be rotated back into this reference config-
uration. Hence, the true strain εi+1 is calculated with Di (4)

εi+1 = εi +Qᵀ
i Di Qi∆t . (12)

Here Qi is the rotation matrix of Fi , where

Fi = ∂x

∂X
=QiUi =Vi Qi . (13)

In the case of Sanisand a different approach has to be
used. Since in Sanisand, Taiebat and Dafalias [2008], the
stretching D is the dependent variable D = f (T̊ ,T , . . . ), the
objective stress rate T̊ 6= Ṫ , see (6), has to be determined
with Newton’s method.

Here the objective stress rate T̊ (n)
i is estimated in the

first iteration step. This results in a stretching tensor

D (n)
i = f

(
T̊ (n)

i ,Ti ,Ei

)
from which the components of ȧ(n)

i
can be calculated using

ḣ(n)
i = D (n)

11 (1+hi ) , (14)

ġ (n)
i = D (n)

22 (1+ gi ) , (15)

ḋ (n)
i = D (n)

33 (1+di ) and (16)

ḟ (n)
i = 2D (n)

12 (1+hi )(1+ gi )+ ḣ(n)
i fi

1+hi
. (17)

With known ȧ(n)
i = a

(
T̊ (n)

i

)
the spin tensor W (n)

i =W
(

ȧ(n)
i

)
=

W
(

ȧ
(
T̊ (n)

i

))
and the stress rate Ṫ (n)

i can be calculated with

(5) and

Ṫ (n)
i = T̊ (n)

i +W (n)
i Ti −Ti W (n)

i . (18)

The new estimation for T̊ (n+1)
i is calculated by

T̊ (n+1)
i = T̊ (n)

i −
(
∂Ṫi

∂T̊i

(
T̊ (n)

i

))−1

R (n)
i . (19)

Again, if the norm of the residuum R (n)
i = Ṫ (n)

i − Ṫi is smaller

than a given tolerance, T̊ (n)
i and ȧi are accepted as solutions,

we further proceed like for the other models.

4. Rotation of principal stresses with
a 1γ2ε apparatus

In this section, some results of tests with the 1γ2ε apparatus,
Joer et al. [1992] (schematic sketch in Fig. 6) are compared
with numerical simulations with the above chosen constitu-
tive models.

4.1. Testing device
The apparatus consists of a parallelogram (OABC), which

encloses the sample. The parallelogram can undergo hor-
izontal and vertical elongations and a shear deformation
(tilting of sides AB and CO). The sides AO and BC remain
horizontal and the sides AB and CO remain parallel dur-
ing the deformation. Therefore, four motors are necessary,
which control the elongations. The point O is fixed. Each
side consists of six comb-shaped segments, interlocked in
such a way that they maintain the continuity of the side.

The four sides are linked with hinges in such a way that
they can be tilted. Shear strain is imposed by applying a hor-
izontal displacement at the center of AB by a fifth motor, so
that the side tilts around A and, correspondingly, the side CO
around O.

The corners B, C and O are equipped with strain-gauged
hinges consisting of two complete strain-gauge bridges
placed inside a cylinder. This allows measurement of the
forces applied at each corner in horizontal and vertical
directions, Fig. 7. Assuming homogeneous stress in the
sample, the stress state can be determined from the applied
forces.

The deformation is controlled by the velocities imposed
by the motors. Strain paths can be easily prescribed, since
the deformation is controlled. In our case we have stress
path control and this requires the use of servo-control,
where the deformation is adjusted according to the mea-
sured forces.

Schneebeli cylinders of polyvinyl chloride (PVC) with
different diameters (1.5, 3 and 3.5 mm), which can be seen
as a two dimensional analogous material to soil, Schneebeli
[1956], are used in these tests. Joer et al. [1998] give no
further description of the material and its initial state at the
test. Hence, it is not determinable if the sample was in a
dense or loose state.

4.2. Stress path
The complex cyclic shear tests with constant principal

stress values, Joer et al. [1998], are numerically simulated.
The sample is initially loaded with a vertical stress

σ22 = σmax = 90kPa and lateral stress σ11 = σmin = 50kPa.
σmax, σint and σmin denote the maximum, intermediate
and minimum principal stresses, respectively. The sample
is deformed in a way that the directions of the principal
stresses rotate while their values remain constant. This
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been shown (Budhu, 1979) that the state of stress
or strain in either the Cambridge version or the
NGI version of the simple shear apparatus is far
from homogeneous. Many other types of testing
apparatus, some much more complex, have also
been developed. These include: the `true triaxial'
type of apparatus, where the three principal stres-
ses can be varied independently (Ko & Scott,
1967; Pearce, 1971; Lade, 1978; Lanier & Zitouni,
1987); the hollow cylinder apparatus (Saada, 1988;
Ishihara & Towatha, 1983; Symes et al., 1984;
Miura et al., 1986; Karcha®, 1988); the directional
shear cell (DSC) (Arthur et al., 1977, 1980; Sture
et al., 1987); and, more recently, the Matsuoka
apparatus (Matsuoka et al., 1986) and the 1ã2å
apparatus (Joer, 1991). The last two types of
apparatus are designed to carry out plane strain
tests on a bidimensional `analogue soil' material,
as described later.

In this overview of laboratory devices, only
hollow cylinder apparatus with different inner and
outer pressures, the DSC and the Matsuoka and
1ã2å apparatus are capable of controlling rotation
of the principal stress or strain axes. The results
obtained in the pioneering work of Arthur (Arthur
et al., 1977, 1980) were essentially concerned with
discontinuous rotations of the principal stress direc-
tion, i.e. by loading±unloading and then reloading
in another direction. Wong & Arthur (1986) de-
scribed tests with continuous rotation of the princi-
pal axes. They mentioned that `only the unique
and interesting special case of continuous rotation
of principal stress axes without reversal eliminates
sudden rotation of principal stress increment direc-
tions'. To our knowledge, very few tests of this
kind have been reported in the literature (Ishihara
& Towatha, 1983; Ishihara & Momenzadeh, 1986;

Matsuoka et al., 1986; Miura et al., 1986). The
aim of the present paper is to present results in this
®eld.

The 1ã2å apparatus was ®rst described in Joer
et al. (1992), and a short description is included
here for completeness. Then, a series of new tests
involving continuous rotation of the principal stress
and strain axes is described, focusing the comments
on the volume change and the relative orientations
of the principal axes of stress and strain incre-
ments. The results illustrate important features of
the behaviour of granular materials subjected to
rotation of their principal axes, including a ten-
dency for liquefaction in tests at constant volume,
and the existence of a phase lag between the
directions of the principal axes of the stress and
strain increment vectors.

APPARATUS, MEASUREMENTS AND CONTROL

Description of the apparatus
A schematic elevation view of the apparatus is

shown in Fig. 1. It consists of a parallelogram
(OABC), enclosing the analog soil. The parallelo-
gram can undergo shear strain (tilting of sides AB
and OC), and normal strain (elongation of all four
sides). The point O is ®xed to the structure, and
the faces AO and BC remain horizontal. Each face
of the parallelogram consists of six comb-shaped
segments, interlocked in such a way that they
maintain the continuity of the face (Fig. 2). Each
segment is ®xed to a trolley that can travel on a
track with the aid of needle-bearing rollers. One
trolley at the end of each face is ®xed to the track
and the other ®ve can travel along the track. A
motor at the other end of each track imposes a
displacement on the end trolley via a screw-nut

Screw-nut system

Shearing arm

Fork

Shearing trolley

CI

BH

Slide Structure

BV
Fixed trolley

Dynamometrical axe

Track

System of
articulated arms

Dynamometrical axe

HH

Segments

Fixed segment on the track

Dynamometrical axe

HV

A

B C

O

Sample

Fig. 1. Schematic diagram of the apparatus

606 JOER, LANIER AND FAHEY

Figure 6. Schematic diagram of the 1γ2ε apparatus
(from Joer et al. [1998])

A O

CB

A’

C’B’

FO,h

FO,v

FC,h

FC,v

FB,h

FC,v

Figure 7. Deformed configuration of the 1γ2ε appa-
ratus with force measurements

Number of cycles and rotation angle in rad

σ
(k
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0 3=̂6π 6=̂12π 9=̂18π 12=̂24π 15=̂30π
-40
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σ11
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Figure 8. Prescribed stresses in the 1γ2ε apparatus

stress evolution can be described by the following equations

σ11 = σmax +σmin

2
− σmax −σmin

2
cosθ,

σ22 = σmax +σmin

2
+ σmax −σmin

2
cosθ and (20)

σ12 = σmax −σmin

2
sinθ

(cf. Figure 8). θ denotes the angle of the rotation. Note that
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APPENDIX: DEFINITION OF STRESSES

Using the boundary measurements we obtain
two stress vectors on sides OC (TOC) and BC
(TBC) of the parallelogram. The normal and tan-
gential components of the stress vectors are
(óOC, ôOC) and (óBC, ôBC) for TOC and TBC,
respectively.

These measurements de®ne an homogeneous
state of stress only if they ful®ll the reciprocity
condition

TOC
:nBC � TBC

:nOC (21)

where nOC and nBC are the outer normal unit
vectors for sides OC and BC, i.e.

ôBC ÿ ôOC � ÿ(óBC ÿ óOC) tan ã (22)

Experimentally, this condition is not exactly veri-
®ed. So we propose the de®ne the following cor-
rections for shear stresses:
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Fig. 15. Strain path for the test CPC5: (a) deviatoric
strain path; (b) volume change

Fig. 16. (a) Direction of the incremental strain vectors
for test CPC5. (b) Direction of the major principal
stress vectors for tests CPC5 and CPC6.
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Figure 9. Volumetric strain vs. shear strain, experi-
mental results, Joer et al. [1998]

the directions of the principal stresses σmax and σmin are
variable, whereas the direction of σint is fixed and coincides
with the x3-direction.

The numerical simulations are conducted as element
tests. A further assumption has to be made for the boundary
condition in the out of plane direction (x3 in Fig. 5). The out
of plane stress has to be constant to keep the invariants of
the stress tensor constant. Starting from an isotropic stress
state (mean effective stress σmax = σint = σmin = 30kPa)
the stress is anisotropically increased to σmax = 90kPa and
σint =σmin = 50kPa.

The finite element program PLAXIS is used for the simula-
tion of Hardening soil since this model is not explicitly pub-
lished. All other calculations are conducted with MATLAB.

4.3. Results
The volumetric strain (εv = ε11 +ε22) is plotted versus the

shear strain (γ= 2ε12), Fig. 9. An overall decrease of the vol-
ume can be seen in the laboratory test.

The numerical results of the two elastoplastic constitu-
tive models (Sanisand and Hardening Soil) are shown in Fig-
ure 10. The Hardening Soil Model (Fig. 10a) does not show
any volumetric response. Contrary, Sanisand is able to re-
produce the compaction qualitatively (Fig. 10b). Both hy-
poplastic and barodetic models are able to reproduce a com-
paction, Fig. 11 and 12. None of the models is able to repro-
duce the dilatation at the start of the test and at the end of
each cycle.

In Fig. 13 to 17 the volumetric and deviatoric strains are
plotted versus the number of cycles. In these plots all strain
components are considered, i.e. the volumetric strain is de-
fined as εv = ε11 +ε22 +ε33 and the deviatoric strain as εq =√

3
2 tre2 with e = ε− 1

3εvI .

5. Rotation of principal stresses with
a hollow cylinder apparatus

A rotation of principal stresses can also be applied in a hol-
low cylinder test (e.g. Broms and Casberian [1965], Ishihara
and Towhata [1983], Miura et al. [1986], Tong et al. [2010],
Yang et al. [2007]). A schematic sketch of a hollow cylinder
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Figure 10. Results of the simulation with the two
elastoplastic constitutive models
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Figure 11. Volumetric behaviour of Hypoplastic
models

is shown in Fig. 18. The soil sample is loaded with an axial
force, W , an inner pressure, pi, an outer pressure, po and
also a torque T .
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Figure 12. Volumetric behaviour of Barodesy
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Figure 13. Volumetric and deviatoric strains in the
1γ2ε-simulation with Hardening Soil Small
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Figure 14. Volumetric and deviatoric strains in the
1γ2ε-simulation with Sanisand
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Figure 15. Volumetric and deviatoric strains in the
1γ2ε-simulation with Hypo
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Figure 16. Volumetric and deviatoric strains in the
1γ2ε-simulation with Hypo with intergranular strain
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Figure 17. Volumetric and deviatoric strains in the
1γ2ε-simulation with Barodesy
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Figure 18. Schematic sketch of a hollow cylinder test

It is not possible to measure the stress in the sample
directly and the stress is not constantly distributed in the
specimen, e.g. for different inner and outer pressures the
radial stress changes from pi to po along the wall thickness.
To compare the results of the laboratory test, averaged
stresses are used. Hence, some assumptions on the stress
distribution and the material behaviour are necessary. In
the literature several solutions can be found, depending on
whether the averaging of the stress is made over the thick-
ness of the wall (e.g. Hight et al. [1983], Miura et al. [1986]
and Yang et al. [2007]) or the volume (e.g. Naughton and
O’Kelly [2007] and Sayao and Vaid [1991]), if it is assumed

200 mm in outer diameter, 150 mm in inner diameter, and 314
mm in height. As shown in Fig. 1, the external loadings acting on
the sample are axial load W, torque T, inner pressure Pi, and outer
pressure Po, which induce four stress components of the vertical
stress component �z, radial stress component �r, circumferential
stress component ��, and shear stress component �z� on the ele-
ment. In this apparatus, the above four loading parameters can be
independently controlled, so do the four stress components.
Equivalently, the stress state of the specimen can also be ex-
pressed by four independent parameters q, p�, b, and �� ���

=arctan�2�z� / ��z−���� /2, the angle of the �1 axis to the z axis�.
The equations used to calculate the stress and strain parameters
are the same as those in Yang et al. �2007�, which are listed in
Table 1 to facilitate reading.

Toyoura standard sands �Gs=2.645, D50=0.24 mm, Uc=1.50,
emax=0.975, and emin=0.635� were used for the tests. The air plu-
viation method was employed to prepare the hollow cylinder
sample, and the detailed procedures for sample preparation, con-
ditioning, and loading are similar to those described in Yang et al.
�2007�. Remarkable inherent fabric anisotropy of the sand speci-
mens was indicated by Tong et al. �2008�.

The effective stress path for the hollow cylinder shear tests
was presented in the stress plane of p� versus q and ��z−��� /2
versus �z� in Fig. 2. An initial isotropic stress of 30 kPa �Point A�
was applied by vacuum to hold the sample when the mold was
removed. The samples were then anisotropically consolidated to
the specified stress state �Point B�. The shear test, in which the
principal stress axes rotated counterclockwise from 0 to 180°
�Point B→C→D→E→B� with the effective principal stresses
remaining the same magnitudes, was undertaken under drained

conditions. To ensure full discharge of water from the sample, the
angular distortion rate was set at 0.04°/min. The stress variables
were measured during the testing, and they were found to accu-
rately match the specified values, as presented in Zhang et al.
�2008�. As shown in Table 2, a total of 12 drained tests in four
series were conducted and each serial covered three b values,
namely, b=0.1, 0.5, and 1.0.

Test Results and Discussions

Variations in Strain Components with Number
of Cycles

Figs. 3�a–c� show the typical development of three normal strain
components �contraction is positive� with the number of cycles
for Test Series II under three cases of b. It is observed that al-
though the magnitudes of effective principal stresses are main-
tained constant, apparent plastic strains are produced due to
principal stress axes’ rotation alone. The three normal strain com-
ponents �z, ��, and �r accumulate gradually with oscillation char-
acteristics as the number of cycles increases and most of strains
are induced within the first several cycles. Meanwhile, by com-
paring Figs. 3�a–c� for different values of b, it can be found that
b plays a significant role in the development of the strain, which
will be detailed in the following.

Expansive vertical strain �z is induced under three cases of b.
It reaches the maximum magnitude in the first cycle and ap-
proaches the emergence of the contractive strain during cyclic
rotation of principal stress axes under b=0.1. However, under b

Fig. 4. Development of the volumetric strain with number of cycles for �a� Test Series I; �b� Test Series II; �c� Test Series III; and �d� Test Series
IV �Zhang et al. 2008�
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Figure 19. Volumetric strain vs. numbers of cycles in
a hollow cylinder test with Toyoura Sand from Tong
et al. [2010]

that the cylinder is thin-walled (Yang et al. [2007]) or thick-
walled (Naughton and O’Kelly [2007]), or if the stresses are
calculated for a linear elastic material (Hight et al. [1983]),
partially plastic (Sayao and Vaid [1991]) or an average of
elastic and plastic solutions (Yang et al. [2007]). In general,
the differences of the averaged stresses are small for all
different assumptions. The stresses in Tong et al. [2010] are
calculated with the assumptions of a thin walled cylinder,
linear elastic material behaviour and for the shear stress
the average of the elastic and the plastic solution is used
according to Yang et al. [2007].

The initial conditions are given as void ratio e =
0.737±0.007 (Dr ≈ (70±2)%), isotropic stress p = 30kPa.
The sample is then anisotropically compressed so that
σmax = 157.4kPa, σint = 100kPa and σmin = 42.6kPa. This
results in a mean normal stress p = 100kPa, a deviatoric
stress q = 99.4kPa and b = 0.5.(1) The result of the laboratory
test is shown in Fig. 19.

The results of the simulations are shown in Figs. 20 to 24,
where the development of volumetric strain εv and a mea-
sure for deviatoric strain εq with respect to the cycling is
presented. All simulations except Hardening Soil show di-
latation, which is opposite to the behaviour of the physical
test. Hardening Soil shows, like in the 1γ2ε test, no volumet-
ric change. The evolutions of the deviatoric strains predicted
by the models differ considerably, cf. Fig. 25. The deviatoric
strains from the physical test have not been published and,
thus, cannot be compared with the simulated ones. It is also
conceivable that the elastic solution used for the evaluation
of the physical tests is not valid.

Note that a recently published new version of Sanisand
[Petalas et al., 2019] is able to predict the measured contrac-
tant behavior in the hollow cylinder test of Figs. 20 to 24. This
model introduces additionally an anisotropic critical state
line, a fabric tensor, a deviatoric plastic strain rate tensor,
and effects of noncoaxiality are explicitly considered. Thus,
this model ends up with 4 additional material parameters

(1)q =
√

[(σmax −σint)2 + (σint −σmin)2 + (σmax −σmin)2]/2;

b = σint−σmin
σmax−σmin

Open Geomechanics, 2019, article no. 4
Fabian Schranz, Wolfgang Fellin & Dimitrios Kolymbas, Comparative performance of some constitutive models in stress rotation 8



Number of cycles

ε
(%

)

0 1.5 3.0 4.5
0.0

0.2

0.4

0.6 εv
εq

Figure 20. Volumetric and deviatoric strains in a hol-
low cylinder, numerical simulation with Hardening
Soil
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Figure 21. Volumetric and deviatoric strains in a hol-
low cylinder, numerical simulation with Sanisand
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Figure 22. Volumetric and deviatoric strains in a hol-
low cylinder, numerical simulation with Hypoplastic-
ity
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Figure 23. Volumetric and deviatoric strains in a hol-
low cylinder, numerical simulation with Hypoplastic-
ity with intergranular strain
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Figure 24. Volumetric and deviatoric strains in a hol-
low cylinder, numerical simulation with Barodesy
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Figure 25. Deviatoric vs. volumetric strains for the
different hollow cylinder simulations

(i.e. 20 parameters in total) and two tensors of internal state
variables, for which the initial conditions have to be deter-
mined. This shows that the Sanisand-FN model is far more
complex than the here employed Sanisand-model [Taiebat
and Dafalias, 2008]. The other here used models have even
less material parameters than this Sanisand-model (e.g. Bar-
odesy with 7 material parameters), thus the new Sanisand-
FN model is less comparable.

6. Conclusions
The volumetric changes of sand are mainly due to dilatancy
(and contractancy). Dilatancy is an intricate property re-
sponsible for many important effects, such as liquefaction.
However, both experimental observation and numerical
simulation are difficult and prone to errors. The measure-
ment of volumetric changes in experiments proves to be
very sensitive, as different measurement methods (e.g. mea-
surements of the boundary displacements vs. tomographic
measurements) often deviate. Numerical simulations de-
pend on the implementation of the critical void ratio and its
dependence on stress, the experimental determination of
which is very uncertain, Muir Wood [1990].

The simulation of tests with rotation of principal axes
(shear tests) is a veritable extrapolation if the constitutive
model has been calibrated on the basis of rectilinear exten-
sions only. Clearly, extrapolations are more risky than other
tests, which can be understood rather as interpolations.
Correspondingly, a realistic simulation of shear tests is more
difficult to achieve and cannot be expected from every
constitutive model. It should also be taken into account
that deviations from homogeneity are more pronounced in
shear tests, and this makes such tests less appropriate for
calibration and also for validation.

It can be seen from the numerical simulations that con-
stitutive models which use only the principal stresses can,
clearly, not reproduce the volumetric changes of soil due to
principal stress rotation. This is shown here for the Hard-
ening Soil model, but applies also for the often used sim-
pler elastoplastic model with a Mohr-Coulomb failure cri-
terion. In the case of elastoplastic models this shortcoming
can be eliminated with a reformulation of the failure surface
and flow rule in a six dimensional stress space as shown in
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Ishihara and Towhata [1983]. The hypoplastic and barodetic
models are able to reproduce a volumetric change without
any further modification.

Advanced constitutive relations can model volumetric
change of soil due to a rotation of the principal stresses.
However, we have shown a case where these models pre-
dict a dilatant behaviour for this type of loading whereas
the corresponding laboratory test shows contractant be-
haviour. Note that the used constitutive relations model the
volumetric behaviour of drained triaxial and simple shear
tests quite satisfactorily and similarly to each other. This
discrepancy in the results of conventional laboratory tests
and principal stress rotation experiments is a clear hint that
further research is needed to obtain a reliable volumetric
behaviour of constitutive models under complex stress
paths. A successful example of such a development is the
recently published Sanisand-FN model.
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