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Abstract. This paper presents the state of the art of the theory of rock damage

and healing mechanics, with a particular emphasis on the strategies available to

relate the micro-scale of crystals, cracks and pores to the scale of a Representa-

tive Elementary Volume (REV). We focus on mechanical degradation and recov-

ery of stiffness and strength. Damage and healing models formulated in the au-

thor’s group are used as examples to illustrate and compare the reviewed micro-

macro approaches, which include fabric enrichment, micromechanical formula-

tions and homogenization schemes. This manuscript was written for doctoral stu-

dents or researchers relatively new to the field of damage mechanics of geoma-

terials. Equations are provided to explain how to formulate a thermodynamically

consistent model from scratch. Reviewing damage and healing modeling strate-

gies led to the following conclusions: (i) The framework of hyperplasticity, which

does not require any postulate on the existence or uniqueness of yield functions

and which automatically ensures thermodynamic consistency, was never applied

to Continuum Damage Mechanics (CDM). There may be an avenue to improve

state-of-the-art damage and healing models in a similar framework of “hyper-

damage mechanics”. (ii) In damage softening models, the mesh dependence of

the width of the damage localization zone is currently alleviated by non-local reg-

ularization. Perhaps the next step is to couple micro-macro damage and healing

models at the REV scale to discrete fracture mechanics at a larger scale to under-

stand how damage and healing localization occurs. (iii) There may be an oppor-

tunity to use fabric-enriched models to capture the effect of microstructure orga-

nization on both mechanical properties and permeability. (iv) Coupling chemo-

mechanical damage and healing processes across the scales would be useful to

model the competition between damagre and healing whenever both can occur at

the same temperature and pressure conditions. (v) Many challenges still exist to

implement healing models in the Finite Element Method, especially in regards to

the mapping of net damage.
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1. Introduction
In rock mechanics, damage refers to the degradation of
macroscopic properties, usually stiffness and strength, due
to the propagation of cracks. Rocks are endowed with so-
called intrinsic cracks that are modeled as initial damage
or initial fabric, and have anisotropic stiffness and strength
properties, which depend on the orientation of the bedding.
Damage is a phenomenological variable that is used to
quantify the loss of elastic deformation energy. Its evolution
depends on postulates on how the energy dissipates at the
macroscopic scale of a Representative Elementary Volume
(REV) and/or at the microscopic scale of the cracks. Healing,
in this context, refers to the recovery of mechanical prop-
erties due to crack rebonding. In this paper, we will focus
on self-healing, which happens in rock without the external
input of chemicals to seal the cracks.

Continuum Damage Mechanics (CDM) models were
initially formulated to predict the degradation of stiffness
and strength properties of metals. With the increasing en-
ergy demand and the important environmental issues that
arose from waste management, rocks became an interest-
ing object of study in civil engineering, fracture mechanics
and material science - not only in geology. Compared to
fracture mechanics, CDM is seen as a computationally
efficient framework to predict the changes of stress and
deformation at the bulk scale, which is well suited for en-
gineering design. The first attempts to extend CDM to rock
mechanics date back to the 1990’s, with the works of French
researchers like Dragon and Chaboche, who grounded their
formulations on micromechanical analyses presented by
Kachanov in the 1980’s. Two damage mechanics schools
emerged: the first puts emphasis on the thermodynamic
consistency of phenomenological laws expressed at the REV
scale and the second focuses on fracture micromechanics
and homogenization-based upscaling methods. In the late
1990’s, models were improved to account for anisotropic
unilateral effects induced by crack closure. In the early
2000’s, researchers coupled CDM models to the Biot’s the-
ory to account for hydro-mechanical couplings, and later,
to plasticity models. In the 2010’s, the first theories of dam-
age and healing mechanics were born, with the pioneering
works of Ju and Voyiadjis in particular. However, the current
mathematical frameworks do not yet allow accounting for
both crack closure and crack rebonding, and require using
tensor variables that are unrelated to microstructure. As a
result, evolution laws are expressed at the bulk scale and
are disconnected from the physical processes that drive
crack healing and the subsequent changes of stiffness and
permeability.

Here, we explain how to couple Continuum Damage and
Healing Mechanics to microstructure evolution, in order to
understand why rocks break and why some rocks recover
from mechanical damage, and why some do not. We take
two rocks as example materials: granite and halite. Granite
is considered a good candidate for hosting nuclear waste
disposals due to its high strength and stiffness properties.
It is also a rock extensively studied by geomorphologists
to understand how soil forms. One thesis is that tectonic

stresses drive fracture propagation in the granite bedrock,
hence the formation of saprolite, which then degrades into
soil. Another thesis is that saprolite production is controlled
by chemical weathering of Fe-bearing minerals that expand
as they weather, which creates stresses that are sufficient
to fracture rock. Salt rock is an attractive host for deep
waste disposals and gas storage, due to favorable creep
characteristics and low gas permeability. Under favorable
temperature and stress conditions, cracks in salt rebond
due to diffusive mass transfer and pressure solution. Al-
though polycrystalline halite is known for deformation by
isochoric dislocation and diffusion processes, cracking is
also an important grain-scale process at lower mean stress.
The relationship between these micro-mechanisms and
macroscopic strain evolution is still not well understood,
especially in transient states. How and why do complex
macroscopic phenomena (e.g., chemical weathering, dam-
age, healing, creep) emerge from elementary microscopic
processes?

In this paper, we examine these fundamental scien-
tific questions through an extensive literature review that
presents the basic principles of damage and healing me-
chanics, compares state-of-the-art modeling approaches
and summarizes the contributions made by the author
over the past ten years. This paper was written for doctoral
students or researchers relatively new to the field of dam-
age mechanics of geomaterials. Equations are provided to
explain how to formulate a thermodynamically consistent
model from scratch. In Section 2, we present the theory of
CDM, its extension to healing processes and the strategies
available to address softening behavior and residual strains.
In Section 3, the damage/healing variable is defined as a
convolution of moments of probability of microstructure
descriptors. Evolution laws are postulated at the macro-
scopic scale and allow predicting microstructure changes.
In Section 4, crack propagation is modeled based on fracture
mechanics and the REV energy potentials are obtained by
superposition, through an integration of elementary poten-
tials over all the possible crack orientation angles. In Section
5, the damage-healed stiffness tensor is obtained by solving
a matrix-inclusion problem. For each section, we provide
a detailed literature review and we present examples taken
from research done in the author’s group.

2. Phenomenological models of
damage and healing

In phenomenological CDM, the relationship between the
damage variable D and the stiffness tensor of the REV stems
from mathematical requirements on the stiffness tensor.
The damage evolution laws are expressed at the REV scale,
on the basis of constitutive postulates. Most CDM models
are constructed on the basis of hyper-elasticity, in which the
damaged elastic stress/strain relationship derives from an
energy density function. The REV free energy is expressed as
a polynomial function of D and of either stress σ or defor-
mation ε, so as to ensure stiffness positiveness, symmetry
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and constitutive requirements. The damage threshold func-
tion and the damage evolution law depend on constitutive
assumptions and they can take any form, as long as the
model is thermodynamically consistent. The damage vari-
able is usually a scalar, a vector (containing components of
tensile and compressive damage for instance) or a second-
order tensor. Higher-order damage tensors were seldom
used, to account for crack interaction [Kachanov, 1992,
Lubarda and Krajcinovic, 1994], to represent the effects of
sliding cracks [Halm and Dragon, 1998] or to model dam-
aged materials with little symmetries [Cowin, 1985, Zysset
and Curnier, 1995].

2.1. Free energy
Consider a second-order damage tensor D = kF , in

which k = Tr (D) and F is a trace-less second-order fab-
ric tensor. The most general form of the REV Helmholtz
free energy density ψ that ensures that the undamaged
stress/strain relationship is linear is given by:

ψ = ψ (ε,k,F ) = c1

2
Tr 2 (ε) + c2

2
Tr (ε ·ε) + c3

2
Tr 2 (ε ·F )(1)

+ c4Tr (ε ·ε ·F ) + c5

2
Tr 2 (ε ·F ·F ) + c6

2
Tr

(
(ε ·F )2)

+ c7Tr (ε)Tr (ε ·F )

+ c8Tr (ε ·F )Tr (ε ·F ·F ) + c9Tr (ε)Tr (ε ·F ·F )

where the ci are functions of k and of the two invariants of
F , the expressions of which are given in [Zysset and Curnier,
1995]. Often, D is defined as the second-order crack density
tensor, the components of which are given by:

Di j =
N∑

k=1
ρ(k) n(k)

i n(k)
j (2)

with ρ(k) the volume fraction of the kth family of cracks and
n(k) the direction orthogonal to the plane of the kth crack
family. If cracks do not interact, the expression of the free
energy does not contain any damage term of order two or
higher [Halm and Dragon, 1998].

The expression of the damaged stiffness tensor C̃ is de-
rived from Equation 1, as follows:

C̃ = ∂2ψ (ε,k,F )

∂ε2 (3)

In some models, the expression of the damaged (or
damaged-healed) elasticity tensor is postulated and the
expression of the free energy is calculated a posteriori to
check the thermodynamic consistency of the model [Arson
et al., 2012, Chaboche, 1992, 1993, Voyiadjis and Kattan,
2017]. If the damage variable D is a second-order tensor, a
fourth-order damage operator M(D) is introduced to define
a damage effective stress σ̂ [Lemaitre and Desmorat, 2005]:

σ̂= M(D) :σ (4)

σ̂ can be understood as the stress that acts on the effective
surface area of the cross section of a damaged material. The
simplest operator that satisfies the symmetry requirements
for the stress tensor is the operator proposed by Cordebois
and Sidoroff [1982]:

σ̂= (δ−D)−1/2 ·σ · (δ−D)−1/2 (5)

in which δ is the second-order identity tensor. The stiffness
tensor is then obtained by applying the Principle of Equiva-
lent Elastic Strain (PEES) or the Principle of Equivalent Elas-
tic Energy (PEEE) [Hansen and Schreyer, 1994]. The PEES
states that the elastic strain εE induced by the actual stress
σ applied to the damaged material (of stiffness C̃) is equal to
the effective elastic strain ε̂E induced by the effective stress
σ̂ applied to the intact (non-damaged) material (of stiffness
C0):

εE = C̃−1 :σ=C−1
0 : σ̂= ε̂E (6)

Substituting Equation 4 into Equation 6, one gets:

C̃= M−1(D) :C0 (7)

The PEEE states that the elastic strain energy stored by the
damaged material under the actual stress is equal to that
stored by the intact material under the effective stress:

1

2
σ : C̃−1 :σ= 1

2
σ̂ :C−1

0 : σ̂, (8)

from which one gets:

C̃= M−1(D) :C0 : M−T (D) (9)

For some damage operators, the damaged stiffness tensor
obtained by applying the PEES is not symmetric. That is why
the PEEE is usually preferred.

2.2. Damage evolution and thermodynamic
consistency

The damage evolution law is constrained by the require-
ment of dissipation positiveness. This requirement depends
on the damage work-conjugate variable, called the “damage
driving force” or the “energy release rate”. The expression
of the damage driving force is obtained through thermody-
namic conjugation relationships, by differentiating the ex-
pression of the free energy density by damage. The subsec-
tion below explains the main steps of the derivation and re-
calls the thermodynamic consistency requirements.

2.2.1. Thermodynamic principles
The first law of thermodynamics expresses a principle of

energy conservation. Let us ignore pore fluids in this review
section, and let us consider a solidΩ. The energy ofΩ is con-
served if, and only if, any variation of the sum of the inter-
nal energy and kinetic energy of Ω during an increment of
time remains equal to the sum of the work input and heat
exchange during that time increment:

K̇ + Ė = Ẇ +Q̇ (10)

in which K̇ , Ė , Ẇ and Q̇ are respectively the rates (mate-
rial time derivatives) of kinetic energy, internal energy, me-
chanical work and heat exchange. Now introducing the mass
density ρ, the local velocity v and the internal energy density
e, Equation 10 becomes:

D

Dt

∫
Ω
ρ

(
1

2
v ·v +e

)
dΩ = (11)∫

Ω

(
ρb ·v + r

)
dΩ +

∫
Γ

(
t ·v −q

)
dΓ
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In which b is the body force applied to Ω per unit mass, t
is the traction force applied to Ω per unit area, q is the out-
ward heat flux through the boundary Γ of the system Ω and
r is the rate of heat generation per unit mass. We note n the
unit vector normal to Γ. Using the Gauss divergence theo-
rem, the mass conservation equation and the momentum
balance equation, we obtain the following form of the first
law of thermodynamics:

ρė = σ : ε̇ −∇·q + r (12)

in which the small strain assumption ε̇=∇·v is used withσ
denoting the Cauchy stress tensor.

The second law of thermodynamics states that energy is
dissipated during irreversible processes: the rate of entropy
increase of Ω is never less than the rate of entropy increase
due to the heat source r and the heat flux q :

DS

Dt
>

∫
Ω

r

T
dΩ −

∫
Γ

q ·n

T
dΓ (13)

in which T is the absolute temperature and S is the entropy
of Ω. Using the Gauss divergence theorem, Equation 13 be-
comes:

ρ ṡ +∇·
( q

T

)
− r

T
> 0 (14)

in which s is the entropy per unit mass.
Combining Equations 12 and 14, and introducing the def-

inition of the Helmholtz free energy:

ψ = e −Ts, (15)

we obtain the so-called Clausius-Duhem inequality, as fol-
lows:

σ : ε̇ −ρ (
ψ̇+ sṪ

)−q · ∇T

T
> 0 (16)

2.2.2. Thermodynamic conjugation relationships
Helmholtz free energy depends on state variables (elas-

tic strain and temperature for solids and dry porous media,
plus pore pressures for fluid-saturated media) and on inter-
nal variables (such as damage, healing and hardening vari-
ables). We note χ the vector of internal variables. The rate of
Helmholtz free energy density is:

ψ̇
(
εE ,T ,χ

) = ∂ψ

∂εE
: ε̇E + ∂ψ

∂T
: Ṫ + ∂ψ

∂χ
: χ̇ (17)

Combining equations 16 and 17, we get:(
σ−ρ ∂ψ

∂εE

)
: ε̇E+σ : ε̇i r r−ρ

(
s + ∂ψ

∂T

)
Ṫ−ρ ∂ψ

∂χ
: χ̇−q ·∇T

T
> 0

(18)
in which εi r r is the irreversible strain tensor: εi r r = ε−εE .

For isothermal reversible processes, the Clausius-Duhem
inequality is an equality, from which we get:

σ= ρ ∂ψ
∂εE

(19)

Similarly, for non-isothermal reversible processes, the in-
equality is an equality from which we get:

s =−∂ψ
∂T

(20)

As a result, the dissipation inequality reduces to:

φ := σ : ε̇i r r −ρ ∂ψ
∂χ

: χ̇ −q · ∇T

T
> 0 (21)

in which φ is the density of energy dissipation.
Closing the formulation of a phenomenological CDM

model requires not only the expression of the free energy
density, but also, the introduction of evolution laws for
each of the internal variables. These evolution laws ought
to represent the constitutive behavior of the system under
study (Ω) and must satisfy the positiveness of the dissipa-
tion functional φ - a condition known as thermodynamic
consistency.

2.2.3. Thermodynamic consistency
A sufficient condition to ensure thermodynamic con-

sistency in Equation 21 is to express the evolution laws
by differentiating a non-negative convex dissipation po-
tential φ that depends on the tensor of generalized force(
σ,−ρ ∂ψ∂χ ,−∇T

T

)
:

ε̇i r r = ∂φ

∂σ
, χ̇ = − ∂φ

∂ρ
∂ψ
∂χ

, q = − ∂φ

∂∇T
T

(22)

In rate-dependent CDM, evolution laws are often chosen
empirically. It is possible however to ensure thermodynamic
consistency by expressingφ as the sum of a force potential z
(the true stress potential) and a flow potential w (conjugate
to z relative to the rate of internal variable). For more details,
the reader is referred to [Houlsby and Puzrin, 2007] (Chapter
11).

In rate-independent CDM, a damage potential gd is de-
fined as a function of the generalized stress vector and of
the internal variables, such that gd = 0 [Houlsby and Puzrin,
2007]. Ensuring the maximum entropy production between
two equilibrium states then boils down to minimizing the
following Lagrangian functional [Hansen and Schreyer,
1994]:

L =−φ+ λ̇d gd (23)

in which λ̇d is the damage multiplier and gd is a non-
negative convex function. A sufficient condition to minimize
L is to satisfy the following conditions:

∂L

∂σ
= 0,

∂L

∂ρ
∂ψ
∂χ

= 0,
∂L

∂∇T
T

= 0, (24)

which provides

ε̇i r r = λ̇d
∂gd

∂σ
, χ̇ = −λ̇d

∂gd

∂ρ
∂ψ
∂χ

, q = −λ̇d
∂gd

∂∇T
T

(25)

In classical CDM, it is postulated that the damage func-
tion fd (equivalent to the yield function in plasticity) exists
and that it is unique. fd is typically a function of the gen-

eralized force
(
σ,−ρ ∂ψ∂χ ,−∇T

T

)
and of the internal variables(

εi r r ,χ, q
)
. The evolution laws are said to be associate if

fd =gd , i.e., if the flow of internal variables is orthogonal
to the damage surface fd . In this case, the damage mul-
tiplier can be found by using the consistency conditions:
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fd = ḟd = 0, from which we typically get:

∂ fd

∂σ
: σ̇ + ∂ fd

∂ρ
∂ψ
∂χ

:
D

Dt

(
ρ
∂ψ

∂χ

)
+ ∂ fd

∂∇T
T

:
D

Dt

(∇T

T

)
= (26)

−λ̇d

 ∂ fd

∂εi r r
:
∂ fd

∂σ
− ∂ fd

∂χ
:
∂ fd

∂ρ
∂ψ
∂χ

− ∂ fd

∂q
:
∂ fd

∂∇T
T


It was shown by Desmorat [2006] that, for symmetric

second-order damage tensors and for particular forms of
the Helmholtz free energy that are continuously differen-
tiable, dissipation positiveness is ensured if, and only if,
the rate of damage is non-negative, i.e. the rates of damage
eigenvalues are non-negative.

In hyper-plasticity [Collins and Houlsby, 1997, Houlsby
and Puzrin, 2007], it is assumed that the generalized stress
obtained by differentiating the free energy by the internal
variable is equal to the general dissipative stress obtained
by differentiating the dissipation by the rate of internal
variable. The existence and uniqueness of the yield function
follows from that assumption. The flow rules are asso-
ciative in the sense of generalized stress but they can be
non-associative in the sense of true stress. The formulation
requires only two postulates: the expression of a free energy
potential and the expression of the dissipation or of the
yield function in generalized stress. By construction, the
yield function in generalized stress is locally convex, which
automatically ensures the thermodynamic consistency of
the model. The principles of hyper-plasticity can be applied
to CDM to ensure thermodynamic consistency with a min-
imum of postulates. Let us define the damage generalized
stress as:

χd := −ρ ∂ψ
∂D

(27)

In the absence of irreversible deformation and under
isothermal conditions, the dissipation is expressed as:

φ = χd · Ḋ (28)

Most models are formulated with a homogeneous dissipa-
tion function of order one in the damage rate, which ensures
thermodynamic consistency [Collins and Houlsby, 1997].
Assuming that φ is homogeneous or order one in Ḋ , we
have:

φ = ∂φ

∂Ḋ
: Ḋ , χd := ∂φ

∂Ḋ
(29)

in which χd is the damage generalized dissipation stress.
Equations 28 and 29 yield:(

χd −χd
)

: Ḋ = 0 (30)

which indicates that
(
χd −χd

)
should be normal to the di-

rection of damage flow. Applying the principles of hyper-
plasticity to CDM, we assume:

χd =χd (31)

The Legendre transform ξ of φ is a degenerate form that is
identically equal to zero:

φ+ξ=χd : Ḋ , ξ= 0 (32)

ξ = 0 indicates the “yield” (or damage) threshold. The dam-
age function is defined only to within an arbitrary multi-
plicative constant λd , which plays the role of a damage mul-
tiplier: ξ=λd fd . The flow rule, associate in the sense of gen-
eralized stress, is obtained from Equation 32:

Ḋ = λd
∂ fd

∂χd
(33)

The damage multiplier is then obtained from the consis-
tency condition: fd = ḟd = 0. Some constraints on strains
or damage can be included in the model. For instance, if
a constraint is imposed on the damage rate: c

(
Ḋ

) = 0, a
Lagrange multiplier λ′ is introduced to define the modified
dissipation potential:

φ′ = φ +λ′ c
(
Ḋ

)
(34)

and the damage generalized dissipation stress is defined as:

χd = ∂φ′

∂Ḋ
= ∂φ

∂Ḋ
+λ′ ∂c

∂Ḋ
(35)

in whichλ′ is obtained from the condition
(
χd −χd

)
= 0 and

Equation 27, with a known free energy potential. Despite its
attractiveness, the framework of hyper-plasticity was never
applied to CDM. To the author’s best knowledge, the only
paper that distinguishes between damage generalized stress
and damage generalized dissipative stress is that of Darabi
and collaborators [2012], but the proposed model is devel-
oped for viscous processes, for which there is no need for a
damage “threshold” function.

2.3. Anisotropic damage criteria
Quasi-brittle materials such as concrete, rock, and ce-

ramic composites, exhibit a complex mechanical behavior
at the macro-scale, including stress-induced damage and
stiffness anisotropy, non-linear stress/strain relationships
and volumetric dilation, unilateral effects due to crack
closure, and a transition from brittle to ductile behavior
at increasing confining stress [Chiarelli et al., 2003, Kraj-
cinovic et al., 1991]. All of these effects can be explained
by the nucleation and propagation of micro-cracks at the
grain boundaries and/or from pore spaces. CDM models
are phenomenological in nature, which implies that dam-
age tensors essentially measure the damaged mechanical
effects rather than the microstructure evolution itself [Swo-
boda and Yang, 1999b]. As a result, damage evolution laws
are arbitrarily crafted to match a macroscopic behavior
(usually represented by stress/strain curves), and do not
represent any clear physical mechanism. The behavior of
brittle geomaterials depends on the sign of the applied
stress/strain. Therefore, the damage driving force (i.e. the
energy release rate that is work-conjugate to damage) has to
be split into positive and negative components, which are
introduced in two different damage criteria (one for tension,
one for compression) [Comi et al., 2007, Frémond and Ned-
jar, 1996, Lubarda et al., 1994]. Although the singularities
of the damage surfaces raise convergence issues in numer-
ical simulation, CDM models were implemented in Finite
Element Methods for practical engineering purposes [Jin
et al., 2017, Xu and Arson, 2015] and were successfully used
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to predict damage-induced anisotropy and confinement-
induced strengthening in rock subject to compression [Shao
and Rudnicki, 2000, Shao et al., 2005]. However, multiple
non-linear damage phenomena require more constitutive
parameters that are often not related to any microstructure
or mechanical property, which raises calibration challenges
[Halm and Dragon, 1998]. Typically, damage evolution
depends on distinct yield criteria and damage potentials
[Comi and Perego, 2001, Zhu and Arson, 2014]. These so
called bi-dissipative models are based on complex math-
ematical formulations (challenging to implement in FEM)
and depend on a large number of parameters (challenging
to calibrate).

Stress and damage are not the only drivers of mechanical
anisotropy. The mechanical behavior of rocks is strongly
dependent on the orientation of the bedding, layering and
crack patterns [Niandou et al., 1997, Sone and Zoback,
2013]. Rock strength depends on the confining pressure and
the loading orientation with respect to microstructure [Cho
et al., 2012, Heng et al., 2015, Nasseri et al., 2003, Ye et al.,
2016]. In CDM, intrinsic anisotropy (i.e. anisotropy of me-
chanical behavior in the absence of damage) is accounted
for in the expression of the free energy and/or of the damage
criterion. For instance, Hill [1948] extended the von Mises
yield criterion to orthotropic ductile materials, by using six
quadratic stress terms. To further account for the strength
difference in tension and compression, Hoffman [1967]
added three linear terms of stress into Hill’s failure criterion.
Tsai and Wu [1971] then expressed failure criteria in terms of
all the linear and quadratic stress terms. Other approaches
were proposed to introduce projection tensors in the yield
criteria or in the expression of the free energy [Boehler and
Sawczuk, 1977, Cazacu et al., 1998, Rouabhi et al., 2007].
Cazacu and Cristescu [1999] extended the Mises-Schleicher
yield criterion initially expressed for isotropic materials to
transversely isotropic materials, by using the fourth order
characteristic tensor. The microstructure tensor can also
be constructed with eigenvectors representing the axes of
material symmetry to capture the orientation dependence
of strain hardening, softening, damage and plasticity [Chen
et al., 2010, Pietruszczak et al., 2002, Pietruszczak and Mroz,
2000, 2001]. Thermodynamic models were also proposed, in
which the free energy was expressed in terms of microstruc-
ture tensor and strain invariants [Halm et al., 2002, Nedjar,
2016].

Below, we present the damage criteria proposed by Jin
and Arson [2018a] to model crack initiation and propaga-
tion in shale. Phenomenological damage evolution laws are
constructed so as to distinguish the mechanical response of
the material in tension and compression, along the direc-
tion perpendicular to the bedding plane and within the bed-
ding plane. Inspired from the stress invariants used in Hill’s
yield criterion [Hill, 1948] and in Hashin’s failure criterion

for unidirectional fiber composites [Hashin, 1980], we intro-
duce the following strain measures, which are strain invari-
ants if axis 1 is normal to the bedding planes:

I1 = ε11

I2 = ε22 +ε33

I3 = 1

4
(ε22 −ε33)2 +ε2

23

I4 = ε2
12 +ε2

13

I5 = 2ε12ε13ε23 −ε22ε
2
13 −ε33ε

2
12

(36)

where I3 is the square of the maximum transverse shear
strain while I4 is the square of the maximum axial shear
strain. Following the form of Hill’s and Hashin’s models, we
choose a quadratic damage criterion. Based on the invari-
ants defined above, the most general form of a transversely
isotropic quadratic failure criterion is

A1I 2
1 + A2I 2

2 + A3I3 + A4I4 +B12I1I2 = 1 (37)

in which A1, A2, A3, A4 and B12 are material parameters.
Noting x1, x2 and x3 the directions of space, and assuming
that the direction normal to the bedding plane is x1, shale
can fail in sliding mode, in which failure is controlled by the
tensile and shear strength of the bedding planes, and in non-
sliding mode, in which failure is controlled by the strength
of the matrix material. Failure in sliding mode is controlled
by strain components ε11,ε12 and ε13. In non-sliding mode,
the normal direction of the failure surface is contained in
the bedding plane. Due to material isotropy in the bedding
plane (x2 − x3), failure in non-sliding mode is controlled by
all strain components except ε11. Consequently, the two fail-
ure criteria are expressed in the following form:

A1I 2
1 + A4I4 = 1

A2I 2
2 + A3I3 + A4I4 = 1

(38)

for the sliding mode and the non-sliding mode, respec-
tively. We define the equivalent strain measures as εeq

1 /κ0
1 =√

A1I 2
1 + A4I4 and εeq

2 /κ0
2 =

√
A2I 2

2 + A3I3 + A4I4. Noting εt0
11

(respectively εt0
22) and εc0

11 (respectively εc0
22) the initial ten-

sile and compressive strain thresholds for the sliding mode
(respectively for the non-sliding mode), we have κ0

1=εt0
11 (re-

spectively κ0
2=εt0

22) in tension, κ0
1=εc0

11 (respectively κ0
2=εc0

22) in
compression. Two loading surfaces are used to distinguish
micro-crack propagation in the axial and transverse direc-
tions. For tensile damage, we consider the two following
damage criteria:

g1t (ε,κ1) = εeq
1t −κ1

g2t (ε,κ2) = εeq
2c −κ2

(39)

Similarly, we construct the two compressive loading sur-
faces in axial and transverse directions as:

g1c (ε,κ1) = εeq
1c +η〈(σ2 +σ3)/2〉−κ1

g2c (ε,κ2) = εeq
2c +η〈σ1〉−κ2

(40)

where η controls the influence of the confining stress on
compressive damage. Note that the Mc Auley brackets are
introduced to account for compressive confining stress only.
κ1 and κ2 are hardening variables. Damage evolution laws
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are functions of κ1 and κ2. Although calibrated for shale,
the model can be used to solve a wide range of engineering
problems involving the mechanical integrity of structural
members, borehole stability, or delamination of compos-
ites. Anisotropy is accounted for at the microstructure scale
and at the phenomenological scale of the REV. Damage
constitutive laws are direction-specific, which makes it pos-
sible to represent several concurrent damage mechanisms
in the macroscopic response, and to interpret the failure
mechanisms that control the damage process zone.

2.4. Unilateral effects due to crack closure
and friction

Consider for instance that the damage tensor has three
eigenvalues D1, D2 and D3 and three eigenvectors n1, n2

and n3. Suppose that D1 occurred because of a tensile stress
in direction n1. Imagine that this stress is relaxed, and then,
that a compression is applied in direction n1. Physically, it is
expected that the compressive loading will cause the cracks
normal to n1 to close. As a result, the stiffness and the com-
pressive strength of the REV should be recovered in direc-
tion n1, but not in the other directions. Unilateral effects re-
fer to the recovery of stiffness and strength in the directions
normal to closed cracks. Chaboche [1993] proposed to ac-
count for unilateral effects by expressing the damaged stiff-
ness tensor defined in Equation 3 as follows:

C̃ := C̃ +η
3∑

k=1
H (−Tr (Pk : ε)) Pk :

(
C0 − C̃

)
: Pk (41)

in which compression is counted negative.C0 is the stiffness
tensor of the REV in the absence of damage:

C0 = d 2ψ0 (ε)

dε2 , ψ0 = c1

2
Tr 2 (ε) + c2

2
Tr (ε ·ε) (42)

H is the Heaviside jump function: H(x) = 0 if x 6 0 and
H(x) = 1 otherwise. Pk = nk ⊗nk ⊗nk ⊗nk is the projection
operator in the principal base of the damage tensor, and
0 6 η6 1 is a constitutive parameter introduced to account
for partial recovery (in case tensile damage is still effective
upon crack closure).

The rotation of the principal base of damage induced by
crack closure makes classical CDM frameworks inconsistent
[Chaboche, 1992]. Most models proposed for mechanical
crack closure are either isotropic, or restricted to mode I
fracture propagation, e.g., [Ortiz, 1985]. An exception is the
model proposed by Halm and Dragon [1998] for cohesive
materials, which accounts for the recovery of the shear mod-
ulus due to friction. The density of Helmholtz free energy is
written as:

ψ = c1

2
Tr 2 (ε) + c2

2
Tr (ε ·ε) (43)

+ c̃4Tr (ε ·ε ·D) + c̃7Tr (ε)Tr (ε ·D)

+
3∑

k=1
H (−nk ·ε ·nk ) [−c̃7Dkε : Pk : ε− c̃4Tr (ε ·ε ·D)]

+
3∑

k=1
H (−nk ·ε ·nk )

[
2c̃4Tr

(
ε ·γ ·D

)− c̃4Tr
(
γ ·γ ·D

)]

in which c̃4 = c4/Tr (D), c̃7 = c7/Tr (D) and γ is the second-
order sliding variable, defined as γi j = s ym(εi k nk n j )
(where i,j,k denote the number of the damage eigenvec-
tor).

Later, a discrete approach was proposed to represent the
effects of open and closed cracks with a minimum set of
independent damage tensors of various orders [Bargellini
et al., 2006]. Although elegant, this type of formulation was
not used to solve boundary value problems. For the same
level of complexity (and for a similar number of constitutive
parameters to calibrate), micro-mechanical damage models
are usually preferred because micro-mechanical variables
have a physical meaning that can be interpreted within the
framework of fracture mechanics.

2.5. Healing mechanics
Porosity and permeability are good indicators of clog-

ging induced by precipitation. Nevertheless, crack filling
does not necessarily imply crack rebonding. Only loading
and unloading cycles can provide a measure of poten-
tial stiffness recovery by crack rebonding [Fuenkajorn and
Phueakphum, 2011]. Numerous studies were conducted at
the microscopic scale on halite because this natural geoma-
terial can heal even in the absence of impurities [Senseny
et al., 1992, Spiers et al., 1990]. Phenomenological healing
models proposed for salt rock assume that both crack prop-
agation and rebonding are time-dependent, which makes it
possible to represent cracking and healing effects by a vis-
coplastic dilatant deformation [Chan et al., 1998, Hou, 2003].
Microscopic dislocation processes in salt rock are known
to originate isochoric viscoplastic deformation during tran-
sient creep. At the transition to secondary creep, dislocation
multiplication is counteracted and balanced by recovery
phenomena such as cross-slip, diffusion-controlled climb
and recrystallization processes [Senseny et al., 1992]. At low
pressure, dislocation pile-ups and strain incompatibilities
between grains induce stress concentrations, which result
in micro-cracking, brine inflow, salt rock dissolution, and
potential cavern collapse followed by subsidence. Under fa-
vorable temperature and pressure conditions, fluid-assisted
Diffusive Mass Transfer (DMT) [Smith and Evans, 1984],
solution precipitation creep [Carter and Heard, 1970, Raj,
1982] and pressure-solution [De Boer, 1977, Rutter, 1976,
Spiers et al., 1990] can accelerate crack healing, increase
rock stiffness, decrease rock permeability and therefore im-
prove geostorage safety. Figure 1(D) shows the principle of
pressure-solution: the difference of chemical potential be-
tween the solid-solid interface and the solid-fluid interface
drives dissolution at the grain contacts (∆µs ), transportation
via the grain boundary (∆µd ) and precipitation at the free
pore walls (∆µp ). Creep models and deformation maps are
based on the postulate that a one-to-one relationship exists
between microscopic mechanisms and deformation rates
(see Fig. 1(A-C) for example). The underlying assumption
is that the rate of macroscopic deformation equals the rate
of the fastest micro-mechanism, which does not apply to
heterogeneous rock microstructures, in which independent
mechanisms can occur simultaneously. Similar strategies
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were used to model carbonates [Baud et al., 2009, Dautriat
et al., 2011], shale [French et al., 2015, Valès et al., 2007] and
crystalline rocks [Tsenn and Carter, 1987].

Some authors combined rate- dependent or rate-
independent damage and healing variables [Miao et al.,
1995], but most damage and healing models are formu-
lated with a “net damage” variable defined as the difference
between the CDM damage variable and a healing vari-
able [Arson et al., 2012, Ju and Yuan, 2012]. For instance,
the author’s group proposed a phenomenological model
of damage and healing for halite [Zhu and Arson, 2015],
in which the stiffness tensor depends on the difference
between a second-order damage tensor that grows with
positive differential stress, and a volumetric healing tensor
that evolves over time according to a diffusion equation.
The model accounts for unilateral effects and thus distin-
guishes crack closure and crack rebonding. The concept
of healing by diffusive mass transfer (DMT) was initially
introduced to model atomic interactions in cracked glass
[Wiederhorn and Townsend, 1970], and refers to crack re-
bonding by the migration of ions in the lattice forming the
solid mass. In the case of halite, solid DMT occurs from the
center of salt crystals (grains) to crystal edges, which results
in inter-granular crack rebonding. The diffusion coefficient
depends on temperature, which allows capturing the accel-
eration of healing at higher temperature. Model predictions
highlight the increased efficiency of healing with time and
temperature. For instance, a similar level of healing was
achieved after a period of hold of 8.5 hours at 593 K and
after a period of hold of 3 hours at 693 K. All macroscopic
internal variables are expressed as functions of moments of
probability of microstructure descriptors; it is thus possible
to calibrate the model from microscopic and macroscopic
experimental data. More details on CDM fabric enrichment
will be provided in Section 3.

A thermodynamically consistent theory of damage and
healing mechanics was first proposed by Barbero and col-
laborators [2005]. The mechanical dissipation is expressed
as:

φ = σ : ε̇p −ρ ∂ψ
∂D

: Ḋ −ρ ∂ψ
∂H

: Ḣ (44)

in which εp , D and H are the plastic deformation, damage
and healing tensors, respectively. Here, the healing tensor is
a diagonal second-order tensor, defined in the same way as
the damage tensor in Equation 2. Damage and healing com-
ponents are projected onto three principal directions. De-
coupled plasticity, damage and healing potentials are intro-
duced, respectively: gp = 0, gd = 0 and gh = 0, such that it is
possible to maximize the dissipation by minimizing the fol-
lowing Lagrangian functional:

L = −φ + λ̇p gp + λ̇d gd + λ̇h gh (45)

A sufficient condition to minimize L is to ensure that the
partial derivatives of L relative to the components of the
generalized force vector are zero, which, for decoupled po-
tentials, provides the following evolution laws of the internal
variables:

ε̇p = λ̇p
∂gp

∂σ
, Ḋ = −λ̇d

∂gd

∂ρ
∂ψ
∂D

, Ḣ = −λ̇h
∂gh

∂ρ
∂ψ
∂H

(46)

Flow rules are non associate, i.e. the authors postulate the
existence and uniqueness of a plastic yield function fp , a
damage function fd and a healing function fh that all satisfy
the consistency conditions:

fi = 0 ⇒ ḟi = 0, i = p,d ,h (47)

Equation 47 allows calculating the dissipation multipliers
λ̇p , λ̇d , λ̇h . The free energy is decomposed into a damaged-
healed elastic deformation energy and damage, healing and
plasticity internal energy functionals, as follows:

ψ = 1

2

(
ε−εp)

: C̃ (D , H) :
(
ε−εp) +ψd +ψh +ψp (48)

in which ψd , ψh and ψp depend on damage, healing and
plasticity hardening variables, respectively. A new mapping
is introduced to extend the concept of damage effective
stress σ̃ to damage and healing configurations:

σ̃ = (det X D H )−1 : (X D H )1/2 :σ : (X D H )1/2 := M−1 :σ (49)

in which X D H is an operator that translates the evolution of
material surface orthogonal to each direction of space with
damage and healing. The damaged-healed stiffness tensor
C̃ (D , H) is then obtained by invoking the PEEE.

Voyiadjis’s group [Voyiadjis et al., 2011a,b] accounted for
couplings between rate-independent damage, healing and
plasticity. Helmholtz free energy is assumed to be a function
of plastic deformation, damage and healing, as well as plas-
ticity, damage and healing kinetic hardening variables (re-
spectively: α, DK , H K ) and plasticity, damage and healing
isotropic hardening variables (respectively: p, D I , H I ). Ad-
ditionally, the free energy is decomposed as:

ψ = 1

2

(
ε−εp)

: C̃ (D , H) :
(
ε−εp)+ψ∗(

α,DK , H K , p,D I , H I )
(50)

Note that Equation 48 is a particular form of Equation 50.
The dissipation is written:

φ = σ : ε̇p −ρ ∂ψ∂α : α̇ −ρ ∂ψ∂p : ṗ (51)

−ρ ∂ψ
∂D : Ḋ −ρ ∂ψ

∂DK : ḊK −ρ ∂ψ

∂D I : Ḋ I

−ρ ∂ψ
∂H : Ḣ −ρ ∂ψ

∂H K : Ḣ K −ρ ∂ψ

∂H I : Ḣ I

Authors introduce a plasticity yield function fp , a damage
“yield” function fd and a healing “yield” function fh and as-
sume that flow rules are associate, so that evolution laws can
be obtained by minimizing the following Lagrangian func-
tional:

L = −φ + λ̇p fp + λ̇d fd + λ̇h fh (52)

which, if the yield functions are coupled, provides the fol-
lowing evolution laws for the internal variables:

ε̇p = λ̇p
∂ fp

∂σ
+ λ̇d

∂ fd

∂σ
+ λ̇h

∂ fh

∂σ
(53)

Ḋ = −λ̇p
∂ fp

∂ρ
∂ψ
∂D

− λ̇d
∂ fd

∂ρ
∂ψ
∂D

− λ̇h
∂ fh

∂ρ
∂ψ
∂D

Ḣ = −λ̇p
∂ fp

∂ρ
∂ψ
∂H

− λ̇d
∂ fd

∂ρ
∂ψ
∂H

− λ̇h
∂ fh

∂ρ
∂ψ
∂H
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Figure 1. Main deformation, damage and healing mechanisms in salt rock. T: temperature; σmean: mean stress; σd :
deviatoric stress; G: rock shear modulus; R 8.132× 10−3 kJ/K .mol ; K: Boltzman constant; Q: activation energy; D’:
diffusion coefficient; d: grain diameter; Ω: microstructure volume; ∆µ: difference of chemical potential. Top photo-
graph figure adapted and reprinted from [Barber et al., 2010] with permission from Elsevier. Bottom photograph: mi-
crograph courtesy of Zsolt Schléder and Janos Urai: domal salt from the Klodawa diapir in Poland [Schléder et al., 2007,
Urai et al., 1987]

in which the Lagrangian multipliers are obtained by using
the consistency conditions: ḟp = ḟd = ḟh = 0. The evolution
laws of the hardening variables are obtained in a similar
way, with some simplifications if plastic (respectively, dam-
age, healing) functions only depend on plastic (respectively,
damage, healing) hardening variables. The damaged-healed
stiffness tensor is derived from the PEEE, in which the effec-
tive stress is related to the actual stress by an operator that
depends on both damage and healing:

M−1 = [
M−1

D + (
I −M−1

D

)
: M−1

H

]−1
(54)

M D = [(I −D)⊗ (I −D)]−1/2

M H = [H ⊗H ]−1/2

in which I is the fourth-order identity tensor.
The theory of damage and healing mechanics was then

adapted for decoupled rate-dependent damage and healing
processes [Darabi et al., 2012]. The dissipation is written:

φ = −ρ ∂ψ
∂D

: Ḋ −ρ ∂ψ
∂H

: Ḣ (55)

and it is assumed that the damage and healing driving forces
can be expressed as:

−ρ ∂ψ
∂D

= λ̇d
∂φ

∂Ḋ
, −ρ ∂ψ

∂H
= λ̇h

∂φ

∂Ḣ
(56)

The expressions of the free energy ψ and of the dissipation
φ are postulated, which yields the damage and healing evo-
lution laws. Since both are viscous phenomena, no damage
or healing threshold function is needed.

2.6. Irreversible deformation
Crack opening is sometimes assumed to generate irre-

versible deformation due to geometric incompatibilities at
the faces of the cracks that close. Figure 2 shows a typical
stress/strain curve for a uniaxial loading with such residual
deformation. The total deformation ε is the sum of the irre-
versible damage deformation εi d , which remains after un-
loading, the reversible damage deformation εed , which oc-
curs due to the degradation of stiffness after damage growth,
and the purely elastic strain εel , which would exist in the ab-
sence of damage. The total elastic (reversible) deformation
is noted εE . The residual stressσR represents the amount of
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Figure 2. Typical CDM stress-strain curve for a uni-
axial loading path. In this example, the CDM accounts
for irreversible deformation, which can be modeled ei-
ther as a function of damage and residual stress, or as
a plastic deformation. In the former case, only one in-
ternal variable is needed to close the formulation, but
thermodynamic consistency is not guaranteed. In the
latter, it is necessary to introduce a plastic potential in
addition to the damage potential.

stress that needs to be applied beyond unloading to return
to a state of zero deformation. Classical CDM allows model-
ing the degradation of stiffness, i.e., εed . The theory of plas-
ticity allows capturing irreversible deformation such as εi d .
CDM and plasticity are thus different, but complementary.
It is natural to couple CDM with the theory of plasticity to
capture both the degradation of stiffness and the occurrence
of irreversible deformation due to crack propagation. Dam-
age mechanics and plasticity are both theories of continuum
mechanics that allow predicting the evolution of state and
internal variables from energy postulates. Typically, the ex-
pressions of the REV free energy and of the dissipation po-
tential are assumed, based on phenomenological observa-
tions and thermodynamic consistency requirements.

Several strategies have been proposed in CDM to cal-
culate the increment of εi d and close the formulation
without introducing a plastic potential. Implications on
the expression of the free energy depend on whether the
non-damaged model is classical elastic, hypo-elastic or
hyper-elastic. Halm and Dragon [1998] proposed the first
CDM formulations with irreversible damage deformation,
within a classical elasticity framework. Swoboda and Yang
[1999a, 1999b] later proposed a similar macroscopic CDM
model, in which the macroscopic damage evolution is re-
lated to micro-crack propagation laws governed by fracture
mechanics. Stress is thermodynamically conjugated to the
total deformation. Using Legendre transform [Collins and
Houlsby, 1997], the REV Gibbs free energy G is related to the

Helmholtz free energy as follows:

ψ (ε,D)+G (σ,D) =σ : ε (57)

ε= ∂G

∂σ
, σ= ∂ψ

∂ε

In classical elasticity:

ε= εE +εi d , εE = C̃−1 :σ (58)

in which C̃ is the damaged stiffness tensor of the REV. As-
suming that the non-damaged elastic behavior is linear (a
common assumption in CDM), and assuming that εi d does
not depend on the current state of stress (but only on the
loading history of the material), Equations 57 and 58 yield:

ε̇ = ε̇E + ε̇i d (59)

ε̇ = ∂2G

∂σ2 : σ̇+ ∂2G

∂D∂σ
: Ḋ

ε̇E = C̃−1 : σ̇+
(
∂C−1

∂D
:σ

)
: Ḋ

ε̇i d = αḊ

in which α is a constant, to ensure that the dissipation is
a homogeneous function of first order in Ḋ [Houlsby and
Puzrin, 2007]. The above derivations impose the following
form of Gibbs free energy:

G (σ,D) = 1

2
σ : C̃−1 :σ+ασ : D (60)

The dissipation inequality is expressed as:

σ : ε̇− ψ̇> 0, −∂ψ
∂D

: Ḋ > 0 (61)

Note that Equation 61 relies on the assumption that vari-
ables ε and D are independent. However, while the total
elastic deformation depends only on the current state of
stress (and accumulated damage), the irreversible dam-
age deformation does depend on the variations of damage.
Hence, it is not possible to consider that ε and D are thermo-
dynamically independent. This contraction was previously
highlighted by the author [Arson, 2014].

Now, if the non-damaged model is hypo-elastic:

ε̇ = ε̇E + ε̇i d (62)

ε̇ = ∂2G

∂σ2 : σ̇+ ∂2G

∂D∂σ
: Ḋ

ε̇E = C̃−1 : σ̇

ε̇i d = αḊ

The inequality of dissipation is the same as Equation 61 and
the constraint on the expression of Gibbs free energy is the
following:

∂2G

∂σ2 = C̃−1,
∂2G

∂D∂σ
=α (63)

It can be seen that the requirements expressed in 63 cannot
be met, because C̃ is a function of damage.

If the non-damaged model is hyper-elastic, stress is ther-
modynamically conjugated to the total elastic deformation,
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as proposed in [Al-Rub and Voyiadjis, 2003, Jin and Arson,
2017, 2018b]:

ψ
(
εE ,D

)+G (σ,D) =σ : εE (64)

εE = ∂G

∂σ
, σ= ∂ψ

∂εE

The decomposition of deformation is expressed as:

ε̇= ε̇E + ε̇i d (65)

ε̇= ∂2G

∂σ2 : σ̇+ ∂2G

∂D∂σ
: Ḋ +αḊ

which does not constrain the expression of the free energy.
The reduced inequality of dissipation now writes:

σ : ε̇− ψ̇> 0, σ : ε̇i d − ∂ψ

∂D
: Ḋ > 0,

(
ασ− ∂ψ

∂D

)
: Ḋ > 0

(66)
To summarize:

• In classical elasticity, the introduction of εi d in the
formulation poses a problem to express the inequal-
ity of dissipation. The dependence of εi d to damage
is usually ignored, and that is a contradiction.

• In hypo-elasticity, it is impossible to account for ir-
reversible damage deformation without introducing
a plastic potential that translates the dependence of
irreversible deformation to the stress path and not
only to the evolution of damage.

• In hyper-elasticity, it is possible to close the formu-
lation of a CDM model with irreversible damage
deformation without resorting to any extra plastic-
ity potential, but the expression of the inequality of
dissipation is not classic. While for certain classes
of CDM models, thermodynamic consistency is
ensured as long as the damage rate is positive
[Desmorat, 2006], it is not the case in hyper-elastic
CDM models with irreversible damage deformation.

Accounting for irreversible damage deformation with only
one internal variable is likely to lead to inconsistencies. Ad-
ditionally, this kind of formulation often falls short when the
material response is very different in tension and compres-
sion, like in rocks [Xu and Arson, 2014].

A sound alternative is to calculate irreversible deforma-
tion by means of a plastic potential. Note that the damage
and plastic potentials can be coupled, but the formulation
resorts to at least two internal variables, which avoids the
inconsistencies mentioned above. A general framework for
coupling damage and plasticity models was given in [Al-Rub
and Voyiadjis, 2003, Hansen and Schreyer, 1994, Luccioni
et al., 1996]. The basic principles are the same as in mod-
els that couple damage and healing. The dissipation is writ-
ten in the same way as in Equation 51, without the healing
terms:

φ = σ : εp −ρ ∂ψ∂α : α̇ −ρ ∂ψ∂p : ṗ (67)

−ρ ∂ψ
∂D : Ḋ −ρ ∂ψ

∂DK : ḊK −ρ ∂ψ

∂D I : Ḋ I

Assuming the existence of a plastic potential gp = 0 and of a
damage potential gd = 0, the maximization of dissipation is

ensured if the associated Lagrangian functional L reaches a
minimum. In this case, we have:

L =−φ+ λ̇p gp + λ̇d gd (68)

A sufficient condition is to impose that the partial deriva-
tives of L in reference to the components of the generalized
force vector are zero, which yields the following evolution
equations:

ε̇p = λ̇p
∂gp

∂σ
+ λ̇d

∂gd

∂σ
(69)

Ḋ = −λ̇p
∂gp

∂ρ
∂ψ
∂D

− λ̇d
∂gd

∂ρ
∂ψ
∂D

Note that in [Al-Rub and Voyiadjis, 2003], it is assumed that:

ε̇p = λ̇p
∂gp

∂σ
, ε̇i d = λ̇d

∂gd

∂σ
(70)

which is equivalent to decoupling the irreversible defor-
mation due to plasticity from that due to damage. As
explained above, caution is needed in defining the free
energy and the dissipation potentials in order to ensure the
non-conditional positiveness of the dissipation functional.

Numerous damage-plasticity models were proposed for
rocks starting in the early 2000’s [Bennett and Borja, 2018,
Chen et al., 2012, Chiarelli et al., 2003, Conil et al., 2004, Du-
four et al., 2012, Le Pense et al., 2016, Parisio and Laloui,
2017, Parisio et al., 2015, Salari et al., 2004, Shen et al., 2001,
Zhang et al., 2016, Zhou et al., 2008]. Note that the list is
far from exhaustive. Many other types of phenomenological
damage-plasticity models exist for concrete, but reviewing
them here would be beyond the scope of this paper.

2.7. Non-local CDM
Finite Element models of damage or strain softening

exhibit mesh dependency. The finer the mesh, the narrower
the damage zone. Since the energy dissipated per unit vol-
ume is finite, the vanishing damage zone volume causes
the structure to fail with zero energy dissipation, which is
physically unrealistic [Bazant and Pijaudier-Cabot, 1988,
Pijaudier-Cabot and Bažant, 1987]. From a mathematical
standpoint, partial differential equations loose their hyper-
bolic (respectively elliptic) character in dynamic problems
(respectively in quasi-statistic problems), thus making the
initial-boundary problem ill-posed [De Vree et al., 1995,
Peerlings et al., 1996a]. To avoid numerical inconsistencies,
damage softening models are formulated with non-local
variables, which allows simulating finite localization zones,
the size of which is independent of the mesh size. Internal
lengths are used to scale the influence of a variable defined
at x on a point located at x+dx. The main strategies are
[Lasry and Belytschko, 1988]: (1) spatial averaging of state
variables (integral nonlocal formulation); (2) introduction
of spatial gradients of state variables (differential nonlo-
cal formulation); (3) microstructure enrichment; and (4)
introduction of rate dependency. Rate dependency occurs
naturally if diffusion equations are used for deformation
and dissipation evolution laws: the diffusion coefficient is
inversely proportional to the square of an internal length
parameter (e.g., percolation distance for DMT). Although
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convenient, the use of a diffusive creep law for brittle-elastic
solids can lead to thermodynamic inconsistencies [Tur-
cote and Shcherbakov, 2006]. Hence we restrict our review
to integral and differential non-local formulations and to
microstructure enrichment.

2.7.1. Integral non-local formulation
In integral formulations [Bažant and Jirásek, 2002, Bazant

and Ožbolt, 1990], space averages are weighted by attenua-
tion functions. If η(x) is a local field variable in a solid body
occupying a domain V , the corresponding non-local field
variable η̄(x) is defined as:

η̄(x) =
∫

V
α′(x ,ξ)η(ξ)dξ (71)

where α′(x ,ξ) is a weight function. The local and integral
values of a uniform field at a point are equal, hence the
weight function satisfies a normalization condition that can
be expressed as: ∫

V
α′(x ,ξ)dξ= 1 (72)

The normalized weight function is defined as:

α′(x ,ξ) = α(| x −ξ |)∫
V α(| x −ζ |)dζ

(73)

where the weight function α(x ,ξ) is typically a Gaussian
(normal) distribution function or a Bell-shaped function
and always depends on an internal characteristic length lc ,
which is of the same order of magnitude as the maximum
size of the material’s inhomogeneities. The length lc can be
determined experimentally by comparing the responses of
specimens in which the damage remains distributed with
the response of fractured specimens, in which damage lo-
calizes [Bažant and Pijaudier-Cabot, 1989]. It can also be
determined by comparing the simulation results for various
values of lc with the experimental response [Geers et al.,
1999].

Integral non-local regularization was performed on
the averaged energy released rate ω(Ymax (ε)) [Pijaudier-
Cabot and Bažant, 1987], the damage variable ω(Ymax (ε))
[Bazant and Pijaudier-Cabot, 1988], the equivalent strain
ω(Ymax (ε)) [Bažant and Lin, 1988], the specific fracture
strain γ=Ω/(1−Ω) [Pijaudier-Cabot and Bažant, 1987], the
inelastic stress ω(ε)Deε [Jirasek, 1998], the inelastic stress
rate ω̇Deε [Jirasek, 1998] and the inelastic stress calculated
from the non-local strain ω(ε)Deε [Bažant et al., 1996].
Jirasek [1998] demonstrated that only averaging the equiva-
lent strain, the energy release rate or the specific fracturing
strain can correctly reproduce large post-peak deforma-
tion or complete fracture. Other integral non-local models
lead to spurious residual stresses and to a dilation of the
softening zone.

Jin and Arson used an integral non-local formulation
to model geomaterials that exhibit tensile softening [Jin
and Arson, 2018c]. The free energy is expressed in a similar
way as in Equation 1, with different coefficients for open
and closed cracks. Damage evolution laws in tension and
compression are postulated so as to obtain damage patterns

that conform to experimental observations:

Ḋ = λ̇t Dt = λ̇t

 〈ε1〉2/ε̂2
t 0 0

0 〈ε2〉2/ε̂2
t 0

0 0 〈ε3〉2/ε̂2
t

 , (74)

Ḋ = λ̇c Dc = λ̇c

 〈e1〉2/ε̂2
c 0 0

0 〈e2〉2/ε̂2
c 0

0 0 〈e3〉2/ε̂2
c

 . (75)

in which the Lagrange multipliers λ̇t and λ̇c are determined
from consistency conditions applied to the damage criteria:

ft = ε̂t − (κt +αt TrD)

fc = ε̂c +ηTrε− (κc +αc TrD)
(76)

Equivalent strains for tension (ε̂t ) and compression (ε̂c ) are
defined as:

ε̂t =
√√√√ 3∑

I=1
〈εI 〉2, if Trε> 0

ε̂c =
√√√√ 3∑

I=1
〈e I 〉2, if Trε6 0

(77)

in which εI are the principal strain components and e I are
the principal deviatoric strain components calculated as
e I = εI −Trε/3.

The model was calibrated against triaxial compression
tests performed on shale [Amendt et al., 2013]. As an illus-
tration, we present the predictions made with the calibrated
model at the material point for two stress paths commonly
studied in experimental rock mechanics (note that these
simulations are not replicates of specific physical exper-
iments). Figure 3 shows the stress-strain curve and the
evolution of damage during a uniaxial tension/compression
test, indicating elastic tensile loading (A-B), post-damage
softening (B-C), elastic unloading (C-D), elastic compressive
loading with unilateral effects (D-E), elastic tensile reload-
ing (E-F-G), and again, post-damage softening (G-H). Figure
4 shows the stress-strain curve and the evolution of damage
components obtained for triaxial compression test under
various confining pressures. For all confining pressures
considered, triaxial compression results in lateral damage.
Results show that the calibrated model captures general
trends observed experimentally for quasi-brittle materials
[Germanovich et al., 1994, Sahouryeh et al., 2002, Savalli
and Engelder, 2005, Yuan and Harrison, 2006], such as the
dependence of damage development on the confining pres-
sure, compressive hardening and the difference of up to one
order of magnitude between the tensile and compressive
yield stresses.

In order to account for the non-local nature of damage,
the equivalent strains that control damage evolution (Equa-
tion 77) are replaced by their weighted average defined on
an influence domain V , as follows:

ε̂nl
i (x) =

∫
V
α′(x ,ξ)ε̂i (ξ)dV (ξ), (i = t , c) (78)

where x is the position vector of the material point consid-
ered, and ξ is the position vector of points in the influence
domain of x .α′(x ,ξ) is the normalized Bell-shaped function.
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Figure 3. Simulation of a uniaxial tension-
unloading-compression-tension loading sequence for
a single element. Modified and reprinted from [Jin
and Arson, 2018c] with permission from Elsevier.

Figure 4. Simulation of triaxial compression tests un-
der various confining pressures for a single element.
Modified and reprinted from [Jin and Arson, 2018c]
with permission from Elsevier.

Figure 5 shows the results of FEM simulations of three-
point bending tests, with the local and the non-local formu-
lations of the damage model and for two mesh refinements.
The internal length parameter in these simulations was
lc = 0.01 m. The element size was 0.065 m for the coarse
mesh and about 0.002 m for the fine mesh, so that the ratio
characteristic length to element size was 1.5 for the fine
mesh and 5 for the fine mesh. Results show that non-local
enhancement avoids mesh dependency during crack devel-
opment: the width of the process zone is the same for both
mesh refinements (marked with a rectangle in Figure 5).
However, the shape of the damage process zone is still mesh
dependent because the absence of micro-crack interaction
in the proposed model makes it impossible to capture the
total tensile stress relaxation that happens after the peak
tensile stress has been reached. It is expected that this issue

can be solved by coupling continuum damage mechanics
and discrete fracture mechanics.

2.7.2. Differential non-local formulation
In differential formulations [Bažant and Jirásek, 2002,

de Borst et al., 1999], local field variables are developed
in Taylor series [Askes et al., 2000, Askes and Sluys, 2002,
De Vree et al., 1995, Peerlings et al., 1996b]:

η̄(x) = η(x)+ c1∆
2η(x)+ c2∆

4η(x)+ c3∆
6η(x)+ ... (79)

∆2 denotes the Laplacian operator and the coefficients ci de-
pend on the weight function α and on the averaging volume
V . Note that the odd-order derivatives of η cancel out be-
cause the non-local weight function is symmetric. Since η̄(x)
explicitly depends upon higher order derivatives, C 1 shape
functions are required in Finite Element Analysis (FEA). To
circumvent this limitation, Peerlings et al. [1998, 1996a] cal-
culated the second derivative of Equation 79, multiplied it by
c1 and injected the result back into Equation 79, as follows:

η̄(x)−c1∆
2η̄(x) = η(x)+(c2−c2

1 )∆4η(x)+(c3−c1c2)∆6η(x)+...
(80)

Ignoring the terms or order higher than 4, it is sufficient to
employ C 0-continuous interpolation functions for displace-
ments in FEA.

The coefficients ci can be expressed explicitly in terms
of lc if the weight function is a Gaussian distribution. Be-
cause the non-local variable η̄(x) is explicitly related to the
local variable η(x), Equation 79 is referred to as the explicit
differential-type non-local model, and can rewritten as:

η̄(x) = η(x)+ 1

2
l 2

c∆
2η(x)+ 1

8
l 4

c∆
4η(x)+ 1

48
l 6

c∆
6η(x)+ ... (81)

Similarly, Equation 80 is referred to as the implicit differ-
ential-type non-local model because η̄(x) is implicitly re-
lated to the local variable η(x). The complete development
in series with the Gaussian weight function is expressed as:

η̄(x)− 1

2
l 2

c∆
2η̄(x)+ 1

8
l 4

c∆
4η̄(x)− 1

48
l 6

c∆
6η̄(x)+ ... = η(x) (82)

Note that both series are equivalent when no truncation of
higher order is made. However, at same truncation order,
continuity requirements on shape functions are different for
explicit and implicit series. A detailed account on this topic
is provided in [Jin, 2018]. The implicit second-order scheme,
expressed as:

η̄(x)−ζ∆2η̄(x) = η(x), (83)

is wildly invoked to simulate softening in problems of dy-
namics [Askes et al., 2000, De Borst et al., 1995], brittle
damage [Askes and Sluys, 2002, De Borst et al., 1995, De Vree
et al., 1995] and plasticity [de Borst et al., 1999, De Borst
et al., 1995]. The parameter ζ with the dimension of a length
squared is related to the internal length. As indicated by
Geers et al. [1998], applying Equation 83 with a constant ζ
provides inconsistent predictions in mode I crack propaga-
tion, because the damage zone becomes wider and wider in
a direction perpendicular to the crack, where the material
should unload. It is possible to overcome this limitation
by accounting for the transient behaviour of the gradient
parameter during damage evolution.
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Figure 5. Horizontal damage component (i.e. vertical crack density) obtained by simulating a three-point bending
test without and with non-local enhancement, for various mesh densities. Only one half of the beam is shown. Modi-
fied and reprinted from [Jin and Arson, 2018c] with permission from Elsevier.

2.7.3. Microstructure enrichment
Enriched continuum models have additional degrees

of freedom for microscopic translations and rotations.
Toupin [1964], Mindlin [1964, 1968] and Germain [1973]
developed the theory of microstructure enriched elasticity.
Vernerey and collaborators [2007] extended the formulation
to microstructure enriched elastoplasticity for hierarchical
materials. The microscopic displacement, noted u′

i (x ′
i ),

is defined in reference to the macroscopic displacement,
noted ui (xi ). Expanding u′

i (x ′
i ) in Taylor’s series and trun-

cating the higher order terms, one gets the microscopic
displacement field of a so-called micromorphic continuum
of degree one:

u′
i = ui +χi j x ′

j (84)

The kinematic description of a micromorphic continuum of
degree one only depends on the macroscopic displacement
field ui and on the gradient of micro-displacement ∂u′

i =
γi j . By definition, γi j is a second order tensor, the symmet-
ric part of which, 1

2 (γi j +γ j i ), is called the micro-strain rate
tensor, and the anti-symmetric part of which, 1

2 (γi j −γ j i ),
is named the micro-rotation rate tensor. Noting the macro-
scopic strain εi j = 1

2 (∂i u j + ∂ j ui ), the relative deformation
ηi j = ∂i u j −γi j and the micro-deformation gradient κi j k =
∂iγ j k = γi j ,k , the volumetric Helmholtz free energyψ can be

expressed in terms of the deformation tensors εi j ,ηi j ,κi j k .
The stress conjugates are:

σi j = ∂ψ

∂εi j
, si j = ∂ψ

∂ηi j
, νi j k = ∂ψ

∂κi j k
(85)

The state of stress in a micromorphic material of degree one
is thoroughly defined by the Cauchy symmetric stress σi j ,
the micro-structure relative stress tensor si j , and the third
order double stress tensor νi j k . From a physical point of
view, the Cauchy stress represents the macroscopic average
of forces per unit area, the micro-stress can be interpreted as
a spatial average of forces arising from the nonlocal behav-
ior of the microstructure, and the double stress (or coupled
stress) represents the spatial average of the microscopic
moments per unit area. The micro-relative-stress is the
stress necessary to balance the couple stress at micro-scale
and can be thought of as an additional stress that represents
the nonlocal interactions within the microstructure. Note
that microstructure-enriched models, like the gradient-
enriched formulations, involve non-physical variables (e.g.,
third-order tensors), which raises a number of issues for
numerical implementation [Zhao et al., 2005].

Micro-polar media, governed by Cosserat models [Cosserat
and Cosserat, 1909], are a particular case of micromorphic
material of degree one, in which only micro-rotations are
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accounted for (i.e. microscopic translations are ignored)
[Chambon et al., 2001, Matsushima et al., 2000, Vernerey
et al., 2007]. Second gradient models are also models of
micromorphic media of degree one, in which it is assumed
that the gradient of micro deformation is equal to the macro
deformation. The micropolar and second gradient theories
were successfully applied to rocks [Sulem and Vardoulakis,
2014, Tamagnini et al., 2001] and granular materials [Cham-
bon et al., 2001]. Chambon and collaborators [Chambon
et al., 2001, 2004, Tamagnini et al., 2001] formulated the
strain gradient theory relative to a reference configuration.
They assumed that the deformation gradient followed a
multiplicative decomposition and that the second gradient
of the motion could be decomposed into an elastic and a
plastic part. In their model, the free energy expression is
used so as to formulate the evolution laws (yield functions,
hardening laws) for both the plastic strain and the hyper
strain tensor. As an alternative to the plasticity theory for
modeling the nonlinear irreversible behavior, CDM models
coupled with the strain gradient theory provide another
way to circumvent scale effects encountered in conven-
tional damage models and to simulate strain softening. For
example, isotropic and anisotropic damage models were
proposed with second strain gradient enhancement [Zhao
et al., 2005, Zhou et al., 2002], in which the conventional
strain and the strain gradient are split into an undamaged
elastic part and a damaged irreversible part, and the incre-
ment of work-conjugated Cauchy stress and higher order
stress are updated thanks to the damage yield function and
the damage potential. Both the isotropic and anisotropic
models were used to predict shear bands and to investigate
size effects.

3. Fabric enrichment
Fabric-enriched models are essentially phenomenolog-
ical models in which the damage tensor is defined as a
convolution of moments of probability of microstructure
descriptors. The free energy and the dissipation potential
are postulated at REV scale and constitutive equations are
derived following the method explained in Section 2. In this
section, we review the fabric tensors most used in geome-
chanics, and we apply fabric enrichment to the modeling of
damage in salt rock, within Zysset’s theoretical framework
(Equation 1).

3.1. Fabric tensors in geomechanics
In structural geology, fabric is typically described with

the distributions of crack length, aperture and orienta-
tion [Chester et al., 2004, Long et al., 1982, Wilson et al.,
2003]. In material sciences, poly-dispersed media are often
characterized by the pore size distribution, the lineal-path
function, the chord length probability density function
(pdf), the void nearest-surface distribution function and the
void exclusion probability [Blum and Eisenlohr, 2009, Lu
and Torquato, 1992a,b, Philleo, 1983, Reid, 1955, Torquato
and Lu, 1993, Torquato et al., 1990], see Table 1 for the defi-
nitions (at the end of the paper). In particulate mechanics,
the fabric tensor was used as an internal variable in the

Anisotropic Critical State Theory (ACST) initially proposed
by Dafalias’s group [Dafalias and Manzari, 2004, Dafalias
et al., 2004, Fu and Dafalias, 2011, Gao et al., 2014, Li and
Dafalias, 2011]. In the ACST, any deviatoric second-order
tensor can be used as a measure of fabric. The main incon-
venient is that the governing equations of the model depend
on the fabric tensor in the critical state, which is not known
a priori.

Some examples of microstructure descriptors commonly
used to define fabric tensors are given in Table 1 (at the
end of the paper), in which rock is viewed as an assembly
of different types of minerals and of cracks of different ge-
ometries. All the different minerals and cracks are defined
as “phases”. Figure 6 shows two fabric tensors proposed by
Li and Li for granular media [Li and Li, 2009]. Both tensors
require a Voronoi-Delaunay tessellation of the granular
medium. The contact-based fabric tensor depends on the
contact vector from void centroid to grain contacts, and
characterizes the arrangement of so-called “solid cells”,
which each contains a grain and its assigned void space.
The assigned void space is calculated by dividing each void
element into void tetrahedra whose vertices are the three
vertices of a Delaunay boundary surface and the center
of the void element, and by joining these tetrahedra to
the solid elements that share the same Delaunay bound-
ary surfaces. The void-based fabric tensor depends on the
contact vector from grain centroid to grain contacts, and
characterizes the arrangement of so-called “void cells”,
which each contains a pore (or void) and its assigned solid
space. The latter is calculated by dividing each grain into
solid tetrahedra whose vertices are the three vertices of a
Delaunay boundary surface and the center of the grain, and
by joining these tetrahedra to the void elements that share
the same Delaunay boundary surfaces. The contact-based
fabric tensor and the void-based fabric tensor can be used
to characterize damage in rocks made of polycrystals of ce-
mented aggregates. Cracks affect the geometry of the grains
(crystals or aggregates) and of the pores, which makes the
contact-based and void-based fabric tensors particularly
efficient to track the evolution of intra- and inter-granular
crack sizes, shapes, orientations and connectivity.

State-of-the-art CDM models do not capture the full
range of possible rock fabrics and textures encountered in
nature [Vernon, 2018]. For instance, connections between
cracks imply enhanced hydraulic crack interaction, but
not necessarily mechanical crack interaction, especially
if cracks are randomly oriented and if the distribution of
cracks is dense [Schubnel et al., 2006]. Two different damage
variables are necessary to model permeability enhance-
ment and stiffness degradation [Maleki and Pouya, 2010]
and the REV should be adapted to the properties homog-
enized [Lacy et al., 1999]. In what follows, we provide an
example of fabric-enriched CDM model, in which the dam-
age variable is defined as a convolution of moments of pdfs
of microstructure descriptors.
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Figure 6. Fabric descriptors defined by Li and Li
[2009]. f (n): norm of contact vector from void centroid
to grain contacts; v(n) norm of contact vector from
grain centroid to grain contacts; H0, G0: normaliza-
tion coefficients. Figure adapted and reprinted from
[Li and Li, 2009] with permission from ASCE.

3.2. Example: Fabric enriched damage
model for salt rock

Salt is a polycrystalline material made of bonded crystals
(called grains in the following). Salt rocks’ stiffness depends
both on the mechanical properties of individual grains and
on rock microstructure, which changes with damage. Here,
we summarize the micro-macro mechanical model pro-
posed by the author’s group in [Shen et al., 2017] to predict
the evolution of stiffness, deformation and microstructure
in halite. A series of oedometer tests and triaxial tests on
reagent-grade granular salt in dry conditions and under a
temperature of 150 C were performed in Chester’s group at
Texas A&M University. The diameter of salt particles ranged
between 0.300mm and 0.355mm. Samples were 6.426cm
high and 1.905cm in diameter. The tests were conducted
at a constant rate of 0.034mm/s, which corresponds to
slightly more than 3% per minute. The initial porosity was
40% in oedometer tests. Triaxial tests were conducted on
consolidated samples with a 6% initial porosity.

During the oedometer tests, salt exhibited higher stiff-
ness and lower porosity for higher axial stress. In the cyclic
triaxial tests, salt samples yielded when differential stress
reached 40MPa. 2D-microscopic images, parallel to the
axial direction, were obtained at several stages of the load-
ing path, both in the oedometer and in the cyclic triaxial
tests. Image analyses were performed to capture the evo-
lution of microstructure. For microstructure analyses, we
represented grains by equivalent ellipses of same area as
the actual grain shapes observed in the micrographs. After
examining the evolution of a number of descriptors, we
decided to interpret the evolution of damage in terms of
branch orientation, grain orientation, local solid fraction
and solidity, because these four descriptors exhibited the
clearest trends during the experiments.

The pdfs of the four microstructure descriptors deter-
mined during the oedometer tests are presented in Figure

Figure 7. Probability density functions of four mi-
crostructure descriptors obtained in oedometer tests
for samples with different porosities. Modified and
reprinted from [Shen et al., 2017] with permission
from ARMA.

7. The distribution of branch orientations is more uni-
form than that of grain orientations. Branches have a slight
preferential orientation parallel to the direction of the
minimum principal stress. Grain orientations are initially
relatively uniform, but salt grains take a preferential orien-
tation under compression: the major axis of grains rotates to
align with the direction of minimal compression principal
stress. With the compaction of the sample, the local solid
volume fraction increases, and the distribution of void sizes
becomes more uniform. Due to the dislocations and inden-
tations that occur under high contact forces, grain solidity
decreases during consolidation.

A fabric tensor F̄ can be defined for each descriptor, by
integrating the corresponding pdf. Since only 2D images are
available, fabric tensors are 2×2 and take the following ex-
pression:

F̄i j =
∫
Ω

ni n j E(Γ)dΓ, (i , j = 1,2) (86)

where F̄ is a symmetric second-rank tensor; Γ is the whole
solid angle, and equals to 2π for 2D images; E(Γ)is a pdf. The
components of the fabric tensors are calculated as follows:

F̄11 = 1

N

N∑
k=1

(pk )2(si nθk )2 (87)

F̄12 = 1

N

N∑
k=1

(pk )2si nθk cosθk (88)

F̄22 = 1

N

N∑
k=1

(pk )2(cosθk )2 (89)

(90)

N is the total number of measures (or angles) considered in
the image. For the local solid volume fraction fabric tensor,
pk is the local solid volume fraction of each polygon and θk
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is the angle between the horizontal and the line connecting
a polygon’s center with the image’s center. For the grain so-
lidity fabric tensor, pk is the grain solidity of each grain and
θk is the angle between the horizontal and the line connect-
ing a grain’s center with the image’s center. For the tensors
of grain orientation and branch orientation, θk is the orien-
tation angle of the vector n in reference to a set axis in the
image. We note Gi and Bi the fabric tensors of grain orien-
tation and branch orientation for image i , respectively. We
note Li and Si the traceless components of the fabric ten-
sors of local solid volume fraction and grain solidity for im-
age i , respectively. After calculating the fabric components
according to Equations 90, the fabric tensors of local solid
volume fraction and grain solidity are normalized and their
traceless components are calculated. We note that in each
fabric tensor, the F̄12 component is negligible in front of the
diagonal components. We thus consider that all fabric ten-
sors are diagonal and orthogonal, and we define a normal-
ized fabric tensor Hi to characterize the total anisotropy in-
duced by grain orientation, branch orientation, distribution
of local solid volume fraction, and distribution of grain so-
lidity, as follows:

Hi = γi Gi Bi Li Si (91)

where γ is a normalizing coefficient used to make Tr (H)
equal to 1. The second-rank fabric tensor H can be writ-
ten as kI+K. k is a scalar, and K is a traceless second-rank
tensor. Calculating Hi for each image i allows tracking the
evolution of fabric with deformation.

Based on the expression of the free energy of an elastic
medium enriched with microstructure given by Zysset [Zys-
set and Curnier, 1995], the stiffness tensor of salt rock can
be expressed as a function of k, K and material properties,
as expressed in Equation 1. The coefficients ai are functions
of k and Lamé like constants µc and λc . Considering that
the salt rock Young’s modulus is an exponential function of
porosity [Turner and Cowin, 1987], we propose to relate µc

and λc to the average local solid fraction αl and to average
grain solidity αs as follows:

λc =λo(mαl +nαs ) (92)

µc =µo(mαl +nαs ) (93)

We calibrated the parameters m and n against the exper-
imental oedometer modulus (i.e., the ratio of axial stress by
axial strain). After calibration, the model was used to calcu-
late the fabric tensor Hi for each image and to deduce the
damaged stiffness tensor, according to Equation 1. Figure 8
shows how the oedometer modulus calculated numerically
(red dots) fits the damaged oedometer modulus measured
experimentally (solid line).

For cyclic triaxial tests, image analysis was performed on
samples with 2.4% axial strain and 4.3% axial strain. The pdfs
are presented in Figure 9. Branches orient in the direction of
maximum principal compression stress, forming columns
of supporting grains. Grains exhibit a slight preferential
orientation parallel to the direction of the minimum prin-
cipal stress. During the triaxial loading path, cracks open,
the size of the voids increases, the coordination number of
grains decreases, and a lower local solid volume fraction is
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Figure 9. Pdfs of the microstructure descriptors in
triaxial tests, for different axial strains.

observed. During triaxial loading, grain solidity decreases
and plastic deformation accumulates in the grains.

The global fabric tensor constructed based on the mo-
ments of pdfs in Equation 86 can only capture the total loss
of contact between grains, which appears as inter granular
cracks in the microstructure images. In some cases, the
connection is in fact weakened rather than broken. In other
words, there is a need to represent joint damage between
grains (where damage could be a scalar with a value between
0 and 1). Joint damage cannot be observed by classical scat-
tered electron microscopy, but the effect of joint damage
can be measured via mechanical tests. To capture both the
cracks that are observable in microscopy images and those
that are not, a micro-mechanical approach is preferred.

4. Micro-mechanics enrichment
By contrast with phenomenological models, micro-mech-
anics - enriched models are formulated with micro-scale
damage variables (typically, crack displacement jumps and
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crack densities). The REV free energy is obtained by ap-
plying the principle of superposition: it is the sum of the
elastic strain energy stored in the non-damaged matrix and
of the strain energy stored in the crack displacement jumps.
Damage/crack threshold and evolution functions are ex-
pressed at the microscopic scale, and the REV dissipation is
obtained by summation (or integration).

4.1. Micro-plane theory
In the micro-plane theory [Bažant and Oh, 1985, Bažant

and Prat, 1988], constitutive laws are formulated on a plane
and then integrated over all the possible plane orientations
of space to calculate the REV constitutive law. It is assumed
that either the stresses on the weak planes within the ma-
terial are the components of the macroscopic stress tensor
(static constraint), or that the strain on the weak planes are
the components of the macroscopic strain tensor (kine-
matic constraint). The constitutive relations for each plane
are formulated independently and the equilibrium between
the REV stress σ and the micro-plane stresses is satisfied in
a weak sense, by applying the principle of virtual work. Over
a REV of volumeΩ, the principle of virtual work is expressed
as [Carol and Bazant, 1997, Carol et al., 2001]:

4π

3
σ : δε = 2

∫
Ω

[σNδεN +σT : δεT ]dΩ (94)

in which ε is the macroscopic strain,σN andσT are the nor-
mal and shear stresses that apply on the micro-plane, εN

and εT are the micro-plane normal and shear strains. For
a kinematic constraint:

δεN = N : δε, δεT = T : δε (95)

Ni j = ni n j , Tki j = 1

2

[
niδ j k +n jδi k −2ni n j nk

]
where n is the normal to the micro-plane. Since the individ-
ual components of the virtual strain tensor are independent,
the combination of Equations 94 and 95 provides:

σ = 3

2π

∫
Ω
σN N dΩ + 3

2π

∫
Ω
σT ·T dΩ (96)

The static constraint was extensively used in metal plas-
ticity and applied with great success in the so-called “slip
theory”. The kinematic approach was applied by Bazant’s
research group to describe geomaterials with strain soft-
ening, especially concrete. In some models, an additional
assumption is made to state that the volumetric, devia-
toric and shear responses on each microplane are mutually
independent [Bazant and Ožbolt, 1990, Bažant and Prat,
1988]. In other micro-plane models, the microplane inelas-
tic behavior is characterized by stress-strain boundaries
[Bažant et al., 2000, 1996, Caner and Bažant, 2012], which
can be treated as yield limits. Within the boundaries, the
response is incrementally elastic, i.e. the elastic moduli
are incrementally degraded due to damage. When the ac-
cumulated stress and strain get outside of the boundaries
at some incremental step, they immediately drop back to
the boundaries and then follow the elastic boundary. It is
possible to catch hysteresis effects during cyclic loading. In
another category of micro-plane models, a kinematically
constrained microplane system is coupled to a statically

constrained microplane system to simulate cohesive tensile
cracking [Bažant and Caner, 2005]. Microplane models have
been extensively widely in engineering applications, how-
ever, one should bear in mind that the weak planes do not
correspond to any geometric feature of the microstructure;
there is no physical principle that dictates the evolution
laws of the weak planes.

4.2. Micro-mechanical damage models
In micro-mechanical models, the expression of the REV

free energy stems from micro-mechanical equations (often,
fracture mechanics equations) used to represent micro-
crack initiation, propagation, opening, closure and frictional
sliding. The displacement jump across crack faces [Budi-
ansky and O’Connell, 1976] is used as a basis to upscale
the effective properties of the damaged REV [Kachanov,
1992, 1993] and to express the corresponding energy poten-
tials [Kachanov, 1982a,b, Pensee and Kondo, 2003, Pensée
et al., 2002]. The evolution law is based on fracture mechan-
ics and can represent Mode I splitting [Gambarotta and
Lagomarsino, 1993, Krajcinovic et al., 1991], Mode II friction
sliding [Gambarotta and Lagomarsino, 1993] or mixed mode
wing crack development [Kachanov, 1982b, Nemat-Nasser
and Obata, 1988]. In order to account for crack interactions,
one can explicitly express the stress field as the sum of the
stress that results from external loading and of the stress
that results from crack interaction [Paliwal and Ramesh,
2008].

The expression of the free energy that was established on
the basis of damaged stiffness symmetry and positiveness
requirements can be obtained from micro-mechanics. Here,
we show that the free energy of the REV takes the form of
Equation 1 for a dilute distribution of penny-shaped cracks,
embedded in an isotropic linear elastic matrix of compli-
ance tensor Sm . Each microscopic crack is characterized
by its normal direction −→n and its radius a. For a dilute
distribution of non-interacting cracks, the stress field that
applies to micro-crack faces, σd (x), is the direct projection
of the macro stress σ(x) on crack faces. Consequently, for
each crack, the local stress that applies at the crack faces
is self-equilibrating and the matrix stress is equal to the
macro stress. Considering a penny shaped crack of radius
a subjected to a uniformly distributed normal stress p (re-
spectively shear stress −→τ ) at its faces and embedded in
an infinite elastic medium with Young’s modulus E0 and
Poisson’s ratio ν0, the average normal (respectively shear)
displacement jump, also known as Crack Opening Displace-
ment (COD), is expressed as:

〈
[un]

〉
= 16

3

1−ν2
0

πE0
pa

〈
[−→ut ]

〉
= 32

3

1−ν2
0

(2−ν0)πE0

−→τ a

(97)

If the family contains N cracks of same orientation −→ni ,
the volume fraction of the normal and shear displacement
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jumps can be calculated as follows:

βi = N

Ωr

〈
[un]

〉
πa2

i = ρi c0σ
d : (−→ni ⊗−→ni ) = ρi c0σ : (−→ni ⊗−→ni )

−→
γi = N

Ωr

〈
[−→ut ]

〉
πa2

i = ρi c1[σd ·−→ni − (−→ni ·σd ·−→ni )−→ni ]

=ρi c1[σ ·−→ni − (−→ni ·σ ·−→ni )−→ni ]

c0 =16

3

1−ν2
0

E0

c1 =32

3

1−ν2
0

(2−ν0)E0
(98)

where −→τ =σ·−→ni −(−→ni ·σ·−→ni )−→ni . ρi = N a3
i /Ωr is the crack den-

sity parameter along the direction −→ni with Ωr the volume of
the REV . Details are available in [Budiansky and O’Connell,
1976] and in [Kachanov, 1992]. Note that the value of ρi can
exceed one.

With the soil mechanics convention, the unilateral con-
tact condition at crack faces can be expressed as

[un]> 0, σnn =−→n ·σ ·−→n 6 0, [un]σnn = 0 (99)

The average strain due to the displacement jumps of the
micro-cracks of the family with normal −→ni is calculated as:

εd = N

Ωr

∫
∂ω+

[un](−→ni ⊗−→ni )dS

+ N

2Ωr

∫
∂ω+

([−→ut ]⊗−→ni +−→ni ⊗ [−→ut ])dS

=βi
−→ni ⊗−→ni + 1

2
(−→γi ⊗−→ni +−→ni ⊗−→

γi )

(100)

According to the principle of superposition, the
Helmholtz free energy W ∗ of the REV containing N cracks
of orientation −→ni is the sum of the elastic deformation
energy of the matrix and the energy stored in the micro
cracks displacement jumps. The Gibbs energy (free en-
thalpy) is obtained by Legendre transformation, as follows:

G∗ =σ : εE −W ∗ (101)

in which εE = εe +εd is the REV elastic strain. As a result, G∗
is expressed as:

G∗ =1

2
σ :Sm :σ

+ 1

2
c0ρi H(−→ni ·σ ·−→ni )σ :Ni :σ+ 1

2
c1ρiσ :Ti :σ

(102)

where H(·) is the Heaviside jump function and −→ni ·σ · −→ni =
σi

nn is the normal stress at the crack face. The fourth order
normal (respectively, tangent) operatorNα (respectively,Tα)
is defined by:

Nα = Nα
i j kl =nα

i nα
j nα

k nα
l

Tα = Tα
i j kl =

1

4
(nα

i nα
k δ j l +nα

i nα
l δ j k +δi k nα

j nα
l +δi l nα

j nα
k )

−nα
i nα

j nα
k nα

l
(103)

in which nα is the unit normal vector of each direction α.
For more than one crack orientation, we can calculate

the total Gibbs energy of the REV by integrating G∗ for a

distribution of crack orientations ρ(n), over the unit sphere
S2 = {−→n , |−→n | = 1}, as follows:

G =1

2
σ :Sm :σ

+ 1

8π

∫
S2
ρ(−→n ){c0 H(σi

nn)σ :Ni :σ+ c1σ :Ti :σ}dS

(104)

At the scale of the REV, the second order crack density
tensor ρ is defined in such a way that: ρ(−→n ) =−→n ·ρ ·−→n . The
second order damage tensor is defined as follows:

D = 1

4π

∫
S2
ρ(−→n )(−→n ⊗−→n )dS

= 1

4π

∫ 2π

0

∫ π

0
ρ(−→n )(−→n ⊗−→n )si nθdφdθ

(105)

It can be shown mathematically (see [Lubarda et al., 1994,
Yang et al., 1999] for details) that the crack density function
ρ(−→n ) is related to the damage tensor as follows:

ρ(−→n ) = 3

2
(5−→n ·D ·−→n −TrD) (106)

After introducing the relation 106 in the expression of
Gibbs energy (Equation 104), we obtain the macroscopic
free enthalpy as a function of the second order damage
tensor D , as follows:

G(σ,D) =1

2
σ :S0 :σ+a1 TrD(Trσ)2 +a2 Tr(σ ·σ ·D)

+a3 TrσTr(D ·σ)+a4 TrD Tr(σ ·σ)
(107)

The expression of the free enthalpy obtained from micro-
mechanical principles in Equation 107 is similar to that
assumed in a number of purely phenomenological models,
e.g. [Hayakawa and Murakami, 1997, Kachanov, 1980]. We
also note that Equation 107 is the Legendre transform of the
Helmholtz free energy expressed in Equation 1, in which the
higher order terms in damage have been truncated.

4.3. Example: The Discrete Equivalent Wing
Crack Damage (DEWCD) model

Micro-mechanical approaches are particularly suitable
to model wing cracks that propagate at the tips of sliding
cracks under compression. The sliding wing crack model
was initially presented in the pioneering work of Brace and
Bombolakis [1963]. Since then, numerous studies were de-
voted to the mechanisms of crack propagation in brittle
solids under compression, for instance: [Ashby and Hallam,
1986, Dyskin and Salganik, 1987, Horii and Nemat-Nasser,
1986, Lehner and Kachanov, 1996, Nemat-Nasser and Obata,
1988, Scholtès and Donzé, 2012]. As an example, we present
a summary of the Discrete Equivalent Wing Crack Damage
(DEWCD) model proposed by the author’s group to pre-
dict non-frictional crack propagation under compression
[Jin and Arson, 2017]. If the unilateral contact condition is
satisfied, cracks propagate due to normal tensile stresses,
according to the following mode I propagation criterion:

fd (σ, ai ) =σi
nn − Kcp

ai
(108)
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Figure 10. Wing crack propagation model under
compression. Modified and reprinted from [Jin and
Arson, 2017] with permission from Elsevier.

where Kc is a constitutive parameter which represents the
toughness of the material. If the unilateral contact condi-
tion is not satisfied, shear stresses at the faces of slip cracks
induce the propagation of wing cracks. It is assumed that
wing cracks propagate in pure mode I. Following Horii and
Nemat-Nasser [1986], Lehner and Kachanov [1996], we rep-
resent two half wing cracks as a single fictitious circular
crack, as shown in Figure 10.

Assuming that the tensile driving force F is uniformly dis-
tributed along the faces of the fictitious planar crack (Figure
10), we define the wing micro crack propagation criterion as
follows:

fd (σ, aθi ) =
(
cos(θi )τi

nm(
ai

aθi
)2 −σmi n

)
− Kcp

aθi
(109)

where aθi is the radius of the fictitious wing crack, which can
be determined by projecting the damage tensor defined in
Equation 2 as follows:

aθi = (
|Ωr |
Ni

−→nθ ·D ·−→nθ)1/3 (110)

in which Ni is the number of cracks in the ith crack fam-
ily, |Ωr | is the volume of the REV and −→nθ is the unit vector
normal to the family of wing cracks of orientation θ, and is
expressed as:

−→nθ =−→mi cos(θi )+−→ni si n(θi ) (111)

In order to account for hardening, the material toughness
is expressed as a hyperbolic function of the crack radius, as

follows:

Kc = a3/2

1
K0

+ a
σc

(112)

where a = aθi for a crack in compression (leading to the
propagation of wing cracks), and a = ai for a crack in ten-
sion. We introduce discrete damage potentials (expressed
in terms of Yi ) in a homogeneous function of degree one, as
follows:

gd (ni ) = Yi −C0 (113)

in which Yi is the variable that is work-conjugate to the den-
sity of cracks oriented with a normal −→ni . Yi is a driving force.
C0 is the damage threshold: if Yi exceeds C0, then cracks nor-
mal to −→ni propagate. Following a non-associate flow rule, the
inelastic strain and damage increments can be computed
from the damage potential as

ε̇i n =
M∑

i=1
λ̇i
∂gd (ni )

∂σ
, ρ̇i = λ̇i

∂gd

∂Yi
= λ̇i (114)

where λ̇i is Lagrange multiplier for each family of crack with
normal −→ni . The incremental damage density is calculated
from the increments of crack radius and from the consis-
tency rule:

∆ρi = Ni

|Ωr |
∆(a3

i ), ∆(ai ) =−
∂ fd
∂σ

∂ fd
∂ai

: ∆σ (115)

Once the increment of crack radius is obtained for each
crack orientation (∆(ai ),∆(aθi )), the increment of damage
tensor ∆D can be updated as

∆D =
M∑

i=1

Ni

|Ωr |
∆(ai

3)−→ni ⊗−→ni +
M∑

i=1

Ni

|Ωr |
∆(aθi

3)−→nθi ⊗−→nθi

(116)

in which M is the total number of crack families (or orienta-
tions) considered. Ultimately, the increment of crack density
is obtained by projecting the increment of damage tensor in
each of the 2×21 directions considered in the quadrature:

∆ρi =−→ni ·∆D ·−→ni (117)

The DEWCD model was calibrated against triaxial com-
pression tests performed on shale [Jin and Arson, 2017]. Fig-
ure 11 presents the stress-strain paths and damage evolution
predicted with the calibrated DEWCD model for a uniaxial
tension test followed by unloading and uniaxial compres-
sion. The model predicts that the specimen yields at σy = 12
MPa in uniaxial tension. The introduction of a damage po-
tential together with non-associate flow rules in the DEWCD
model allows capturing the occurrence of residual inelas-
tic strains after unloading. Simulation results also highlight
unilateral effects induced by crack closure in compression.

Figure 12 shows the results of the simulation of a uni-
axial compression cycles of increasing amplitude. Accord-
ing to Kachanov’s calculations [1992], a damage of 0.3 cor-
responds to the initiation of crack interactions. Considering
that above this damage threshold, the REV has reached fail-
ure, the present simulations indicate that the uniaxial tensile
strength is 30 MPa (Figure 11), and the uniaxial compres-
sion strength is 180 MPa (Figure 12). In addition, the yield
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Figure 11. Stress-strain behavior and damage evolution predicted by the DEWCD model, for a stress path that com-
prises a uniaxial tension (OA), an elastic compressive unloading (AB), followed by an inelastic compressive loading
(BC). Modified and reprinted from [Jin and Arson, 2017] with permission from Elsevier.

stress predicted by the DEWCD model in uniaxial compres-
sion is 50 MPa. We conclude that the DEWCD model pre-
dicts values of yield stress and strength that are in the range
of values expected for a rock material like shale. It is also
worth noting that the DEWCD model predicts realistic dam-
age evolution for uniaxial compression, as the axial dam-
age (crack planes perpendicular to the loading axis) does not
propagate, and the lateral damage components grow expo-
nentially after the yield stress is reached. In the simulations
done with the DEWCD model, damage during the second
loading cycle initiates at a lower stress value than the max-
imum stress value reached during the first cycle, which in-
dicates that the DEWCD model can capture hysteric effects.

4.4. Example: Combining micro-mechanics
with phenomenological damage
functions

The DEWCD model proposed in Subsection 4.2 provides
excellent predictions at the Gauss Point, with 5 material
parameters that have a physical meaning. However, the pro-
jection of the crack density due to wing crack growth to the
damage tensor, and the subsequent projection of the dam-
age tensor onto the 2×21 discrete orientations, necessary to
calculate the damaged stiffness tensor, make it challenging
to implement the DEWCD model in a finite element code.
Here, we present a model in which the expression of the REV
free energy is obtained from micro-mechanics principles
but in which micro-crack propagation is governed by phe-
nomenological CDM for ease of numerical implementation.
Details are published in [Jin and Arson, 2018b].

We define the damage driving force in direction i as the
energy release rate necessary to propagate a unit crack den-
sity in that direction. The energy release rate must exceed
the crack resistance R(ρi ) to allow the crack boundary to
grow. The yield criterion adopted in the proposed model is
inspired from the Drucker-Prager model, and is expressed as

follows:
fi (ρi ,Yi ) = Yi −αt Trσ−R(ρi ) (118)

From a mechanical point of view, the expression of the re-
sistance curve R(ρi ) controls the hardening or softening be-
havior after the initial yield surface is reached. We consider
that R(ρi ) is a linear function of the crack density ρi [Pensee
and Kondo, 2003] and we emphasize that our model is only
applicable for dilute distributions of micro-cracks, i.e. be-
fore crack coalescence and before the peak of strength. In
addition, we distinguish the increase of open crack density
in Modes I & II (when the unilateral condition is satisfied
for the i th microplane direction) and the increase of closed
crack density in Mode II (when the unilateral condition is
not satisfied for the i th microplane direction), as follows:

fi (ρi ,Yi ) = Yi −αt Trσ−k(1+ηρi ) (119)

where k = kc ,η = ηc if cracks of the i th family are closed,
and k = ko ,η = ηo if cracks of the i th family are open. Each
crack yield criterion fi is associated with one particular
crack family. The macroscopic yield surface is the boundary
of the elastic domain intersected by all the activated crack
yield surfaces.

For each active microplane direction, the closed crack
criterion is activated if the macroscopic stress projected
on the crack plane is a compression, and the open crack
criterion is activated if the macroscopic stress projected
on the crack plane is a tension. Note that in Equation 119,
the crack yield criterion fi can be rewritten in the form of a
function of stress and crack density only, because the energy
release rate is a function of stress. As a result, the increment
of crack density of an activated crack family ( fi > 0) can be
readily calculated by means of the consistency condition
under controlled stress conditions:

ḟi (ρi ,Yi ) = ∂ fi

∂σ
: σ̇+ ∂ fi

∂ρi
ρ̇i = 0 (120)

Figure 13 provides a representation of the yield surfaces
of the closed and open cracks. The consistency conditions
expressed for all activated crack families form a system of
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Figure 12. Stress-strain behavior and damage evolution predicted with the DEWCD model, for a stress path that
comprises two cycles of uniaxial compression loading - elastic unloading. Modified and reprinted from [Jin and Arson,
2017] with permission from Elsevier.

equations that can be solved simultaneously. By contrast,
only one consistency condition is used in purely phe-
nomenological CDM models, which limits the number of
crack propagation modes considered.

5. Homogenization schemes
Most homogenization schemes used in CDM are based on
Eshelby’s theory [Eshelby, 1957]. The REV is viewed as a
homogeneous matrix that contains sets of inclusions. An
inclusion set is characterized by micro-structure properties
(such as size, shape, orientation) and/or material properties
(such as mechanical behavior or chemical potential). Postu-
lates on free energy and dissipation are made at the micro-
scopic scale [Pensee and Kondo, 2003, Pensée et al., 2002],
for each phase (i.e. for the matrix and for each set of inclu-
sions). The REV constitutive equations are derived from a
matrix-inclusion law [Dormieux et al., 2006b]. Homogeniza-
tion schemes were compared in several studies [Ju, 1991,
Krajcinovic and Sumarac, 1989]. Here, we recall the basic
equations of Eshelby’s theory, we review homogenization-
based CDM and we present homogenization-based models
of time-dependent damage and healing formulated by the
author’s group.

5.1. A review of homogenization-based
damage models for rocks

Eshelby’s theory consists in finding the stress and strain
fields in each phase by solving a matrix-inclusion interac-
tion problem. For a domainΩ subjected to a uniform strain
field E∞ in the far field, the inclusion-matrix interaction
problem is stated as:

∀x ∈Ω=Ωi
⋃
Ω0, ε(x) = E∞+εd (x)

∀x ∈Ω0, ε(x) = ε0(x), σ0(x) =C0 : ε0(x)

∀x ∈Ωi , ε(x) = εi (x), σi (x) =Ci : εi (x)

∀x ∈Ωi , σi (x) =C0 :
(
εi (x)−ε∗i (x)

) (121)

in which Ωi is the domain of the ith inclusion, Ω0 is the do-
main of the matrix. εd is the disturbance strain field (for a
homogeneous medium, the strain field is uniform and equal
to the far field strain, hence the disturbance strain field is
zero).σ0, ε0 andC0 are respectively the stress field, the strain
field and the stiffness tensor of the matrix. Ci , σi , εi , and
ε∗i are respectively the stiffness tensor, the stress field, the

strain field and the so-called eigenstrain of the ith inclusion.
The inclusion eigenstrain is defined as the strain field that is
necessary to apply to the inclusion in order to consider that
this inclusion has the same stiffness tensor as the matrix.

Eshelby’s theory states that if the matrix is homogeneous,
linearly elastic and infinitely extended, and if the inclusions
are ellipsoidal, then the eigenstrain and disturbance strain
fields are uniform in each inclusion, and:

∀x ∈Ωi , εd (x) = S i : ε∗i , S i = P i :C0 (122)

in which S i is the so-called Eshelby tensor and P i is the
so-called P-tensor, which depends on the Green’s function.
From Equations 121 and 122, one gets the other form of the
matrix-inclusion interaction law:

εi =
(
δ+S i : C−1

0 :
(
C i −C 0

))−1
: E∞

=
(
δ+P i :

(
C i −C 0

))−1
: E∞

(123)

in which δ is the second-order identity tensor.
The following concentration tensors (A) are defined:

εi = Ai
∞ : E∞, A0 : E∞ = E , εi = Ai : E (124)

in which E = 〈ε〉 is the macroscopic strain field, defined as
the space average of the local strain field. From Equations
123 and 124, for N inclusions, one gets:

Ai
∞ =

(
δ+P i :

(
C i −C 0

))−1

A0 =
N∑

i=0
φi

(
δ+P i :

(
C i −C 0

))−1 (125)

in whichφ0 is the volume fraction of the matrix andφi is the
volume fraction of the ith inclusion set. The stiffness tensor
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Figure 13. Representation of crack yield surfaces in
the 3D stress space, for a uniformly distributed dam-
age density ρi =0.001 in all microplane directions. Ma-
terial parameters are kc = 278.9, ηc =116.6, α = 10−5 for
closed crack families and ko= 35.9, ηo=20.6, α = 10−5

for open crack families. For a given state of stress, the
elastic domain is the space at the intersection of all
the non-smooth activated crack yield surfaces. Note
the shape difference between the open crack yield sur-
faces and the closed crack yield surfaces, due to the
expression of energy release rate Yi . (a) Color code
used for microplane orientations. (b) Yield surfaces
in stress space for closed cracks. (c) Yield surfaces in
compressive stress space for closed cracks. (d) Yield
surfaces in stress space for open cracks. (e) Yield sur-
faces in tensile stress space for open cracks. Modified
and reprinted from [Jin and Arson, 2018b] by permis-
sion of SAGE Publications, Ltd.

of the REV, Chom , is calculated as follows:

〈σ〉 = 〈C : ε〉 = 〈C : A : E〉 = 〈C : A〉 : E :=Chom : E (126)

Chom =
(

N∑
j=0

φ j

(
δ+P j :

(
C j −C 0

))−1
)−1

:
N∑

i=0
φiC

i :
(
δ+P i :

(
C i −C 0

))−1
(127)

The stiffness of each phase is usually given in the prob-
lem. Therefore, calculating the REV stiffness tensor boils
down to calculating the concentration tensors, which de-
pend on the assumptions made on the microstructure. In

the dilute homogenization scheme, it is assumed that the
volume fraction of the matrix is close to one (i.e., that the
volume fraction of the inclusions is negligible and that the
inclusions do not interact): φ0 ≈ 1. In the Mori-Tanaka ho-
mogenization scheme [Mori and Tanaka, 1973, Qi et al.,
2016a,b, Zhu and Shao, 2015, Zhu et al., 2008, 2009], it
is assumed that the average disturbance field in the ma-
trix is zero, so that the average matrix strain is equal to
the far field strain. The Mori-Tanaka scheme allows ac-
counting for inclusion interactions through the matrix.
However, it was found that if the composite material con-
tains inclusions with different orientations and shapes, the
predicted stiffness tensor may violate symmetry require-
ments [Benveniste, 1987, Castañeda and Willis, 1995]. In
the self-consistent homogenization scheme [Budiansky and
O’Connell, 1976, Ju and Lee, 1991, Lee and Ju, 1991], there
is no concept of matrix, i.e. all phases have comparable
volume fractions. To solve the inclusion-matrix interaction
problem, it is assumed that the matrix stiffness tensor is
equal to the REV stiffness tensor: C0 =Chom . The expression
of the REV stiffness tensor in Equation 127 is thus implicit
and needs to be calculated iteratively. The self-consistent
approach was used by Sumarac and Krajcinovic [1987] for
investigating damage by micro-cracking and by many other
authors to study the nonlinear behavior and load induced
anisotropy due to crack closure and frictional contact [Horii
and Nemat-Nasser, 1983, Zhu et al., 2009].

After the pioneering work of Eshelby [Eshelby, 1957],
Kröner [1961] extended the self-consistent method to the
elastic–plastic behavior of polycrystalline materials, assum-
ing that the presence of inclusions only induced a pertur-
bation of the elastic strain of the matrix (so-called elastic
inclusion-matrix interaction). Hill [1965a, 1965b] replaced
the model of inclusion subjected to a free strain placed in
the matrix by a cavity embedded in an infinite matrix, and
subjected at its wall to surface traction and displacements.
The local stress in the inclusions (σ) and the far-field stress
in the matrix (σ) are coupled to the microscopic strain (ε)
and the macroscopic strain (ε) by the following relationship:

σ−σ=−L∗ : (ε−ε) (128)

in which L∗ is Hill’s tensor. For spherical inclusions embed-
ded in an isotropic matrix, L∗

i j kl is expressed as:

L∗
i j kl =

µ∗

4−5ν

[
(3−5ν)δi jδkl +

7−5ν

2

(
δi kδ j l +δi lδ j k

)]
(129)

in which ν and µ∗ are the Poisson’s ratio and the shear mod-
ulus of the matrix. The link between Hill’s tensor and Es-
helby’s tensor was established by Hill himself [1965a, 1965b]
and can be stated as follows:

L∗ : S =C0 : (δ−S) (130)

Furthermore, Hill formulated the interaction model with an
incremental method instead of the original secant method,
which facilitated further developments to account for the
non-linear behavior of the matrix [Cleary et al., 1980, Ju,
1991, Nemat-Nasser, 2004, Nemat-Nasser and Hori, 2013,
Willis, 1977, Zeng et al., 2015], plastic accommodation
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[Berveiller and Zaoui, 1978, Molinari et al., 1997] and vis-
cous accommodation [Masson et al., 2000, Masson and
Zaoui, 1999, Mercier and Molinari, 2009, Pouya and Zaoui,
1999]. Homogenization schemes were extended to porome-
chanical problems involving pore fluid pressures [Argilaga
et al., 2016, Dormieux et al., 2006a, Levasseur et al., 2009,
Nguyen et al., 2016] and benchmarked in [Levasseur et al.,
2013, Zhu et al., 2008].

5.2. Example: Self-consistent micro-macro
approach for modeling viscous damage
in halite

In quasi-brittle polycrystalline materials like crystalline
rocks, damage by cracking or by cleavage on some crystal-
lographic weakness planes dominates plastic and viscous
deformation [Feng and Yu, 2010, Ju, 1996, Wang et al., 2015,
Zeng et al., 2014, Zhu et al., 2016, Zhu and Shao, 2015].
Here, we summarize the self-consistent homogenization
scheme proposed in [Pouya et al., 2016] to predict the vis-
cous damage and fatigue behavior of halite polycrystals
from mono-crystal slip mechanisms. We propose a homog-
enization scheme based on Hill’s incremental interaction
model [Hill, 1965a], in which we account for the heterogene-
ity of the elastic stiffness tensor that results from different
damage mechanisms occurring at the grain scale. In order
to focus on the effects of grain breakage on macroscopic
viscoplastic strains, we disregard the viscous accommoda-
tion of the matrix in the inclusion-matrix interaction model
(evidenced in [Mercier and Molinari, 2009, Rougier et al.,
1994] for instance).

Halite is a Face-Centered Cubic (FCC) crystal. Due to
electronic interaction forces between ions, the planes along
which sliding requires the minimum energy input are the
six {101} planes. Based on experimental correlations [Pouya
et al., 1991, Wanten et al., 1996], the irreversible shear defor-
mation of a grain is assumed to obey a power law so that the
microscopic visco-plastic deformation writes:

ε̇
v p
i j =

L∑
l=1

γ̇l al
i j , γ̇l = γ0 hl

∣∣∣∣∣ τl

τ0

∣∣∣∣∣
n

(131)

in which γ̇l is the viscoplastic (shear) deformation of grains
subjected to the l th sliding mechanism in the grain, n is a
material parameter, γ0 is a reference deformation rate, and
τ0 is a reference shear stress, arbitrarily set equal to 1 MPa.
hl depends on the sign of τl : if τl is positive, hl = 1; if τl is
negative, hl =−1. For halite mono-crystals, L = 6 (with only
2 independent sliding mechanisms). In global matrix coor-
dinates, the l th sliding system of the mono-crystal is noted:

al
i j =

nl
i ml

j +nl
j ml

i

2
(132)

in which nl and ml are respectively the vector normal to the
l th sliding plane and the l th unit sliding vector.

The local stress in the inclusions (σ) and the far-field
stress in the matrix (σ) are coupled to the microscopic
strain (ε) and the macroscopic strain (ε) by Equations 128
and 129. In the model proposed here, macroscopic damage
triggers when one mono-crystal fails. Microscopically, the

initiation of damage at the grain scale is restricted to mode
I failure, which occurs when the microscopic stress exceeds
the tensile strength of salt mono-crystals (equal to 2MPa): if
the major principal local stress of a grain exceeds 2 MPa, the
grain breaks and is replaced by a void. Damage propagates
when subsequent stress redistribution and further loading
bring micro-stress in other grains to the tensile limit. The
number of unbroken grains is noted Ng , the number of
broken grains is noted Nb , and the total number of grains
in the REV is noted N . The dilute scheme estimate for the
elastic matrix yields the following effective bulk modulus (κ̃)
and shear modulus (µ̃):

κ̃= Ng

N
κ= N −Nb

N
κ= (1−D)κ

µ̃= Ng

N
µ= N −Nb

N
µ= (1−D)µ

(133)

in which the damage variable is defined as D = Nb/N =
1 − Ng /N . The micro-macro stress computational method
is explained in detail in [Pouya et al., 2016]. For each time
increment, the damage criterion is first checked in each
grain; grains in which the stress exceeds the tensile strength
are deleted. The sliding mechanism is then activated in the
non-broken grain to update the stresses with the viscoplas-
tic strain development. The model was calibrated against
creep tests.

Here, we show the impact of grain breakage on the creep
deformation regime of the salt polycrystal and on the re-
sponse of the salt polycrystal to cyclic loading. We start by
simulating the three following long-term creep tests: (i) “no
damage” case: grain damage accounted for under low creep
stress (5 MPa); (ii) “non-damage model” case: grain dam-
age not accounted for under high creep stress (7 MPa); (iii)
“damage model” case: grain damage accounted for under
high creep stress (7 MPa). Results are presented in Figure 14,
which shows the projections of the principal micro-stresses
on the radial and vertical axes. Compression is plotted in
the bottom left quadrant, and tension is plotted in the top
right quadrant. In the “no damage” case, the macroscopic
strain rate reaches a steady state in the secondary creep
phase, which indicates an absence of accelerated creep.
Microscopic tensile stresses remain below 2 MPa, which
implies that none of the mono crystals breaks, even though
grain breakage is taken into account in the model. In the
“non-damage model” case, the macroscopic strain rate re-
mains almost constant, and microscopic stresses exceed
the tensile strength limit, which indicates that grains would
have broken if damage had been accounted for. In the
“damage model” case, the microstress goes to zero in some
of the grains, and the macroscopic strain rate increases
abruptly at the end of the creep test. These results indicate
that the model can capture the accelerated creep regime
(tertiary creep) caused by grain breakage. The simulations
reproduce the creep rates observed in the experiments re-
ported in Fuenkajorn and Phueakphum [2010] as well as
the occurrence of tertiary creep in the form of accelerated
creep.

We now study the response of the polycrystal to a sinu-
soidal cyclic loading of frequency 0.03 Hz (= 2592 day−1)
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Figure 14. Comparison of different creep tests, with and without account for grain breakage. (a) Time evolution of
total macrostrains. (b) Time evolution of viscoplastic macrostrains. (c) Major microstress component at the end of the
creep tests. (d) Minor microstress component at the end of the creep tests. Plots (c) and (d) show the projections of
the principal micro-stresses on the radial and vertical axes. Compression is plotted in the bottom left quadrant, and
tension is plotted in the top right quadrant. Modified and reprinted from [Pouya et al., 2016] with permission from
Elsevier.

for several maximum loading stresses and loading ampli-
tudes. For small maximum stress and small loading ampli-
tude, a limit cycle is reached. The number of broken grains
(Nb) remains low, and Young’s modulus decreases to a finite
limit value. For larger maximum stress or larger loading am-
plitude, failure occurs after a limited number of cycles. Fig-
ure 15 shows the results obtained for a cyclic loading with
a maximum loading stress of 20 MPa and an amplitude of
10 MPa. Some grains experience zero stress, which indicates
that they are broken. Grain breakage first occurs at the 6th

cycle, and the whole polycrystal fails after the 8th cycle. The
increasing number of broken grains is visible in the progres-
sive reduction of the Young’s modulus in the macroscopic
stress-strain curve. These results are in agreement with the
experimental results reported in [Fuenkajorn and Phueak-
phum, 2010]. Damage initiates after a low number of cycles,
and the behavior becomes extremely brittle thereafter: total
failure usually occurs less than five cycles after the initiation
of damage.

One of the main limitations of the model presented here
is the assumption of elastic matrix-inclusion interaction. In

order to account for damage accommodation, the authors
later derived the interaction law in Equation 128 as follows
[Pouya et al., 2019]:

δσ−δσ=−L∗ (D) : (δε−δε) −
(
∂L∗ (D)

∂D
: δD

)
: (ε−ε) (134)

The last term translates damage accommodation, i.e. the
irreversible alteration of the inclusion-matrix interaction
stiffness tensor due to damage D . Another limitation of the
previous model is the assumption that the REV matrix is
isotropic. One original aspect of the inclusion-matrix model
presented in [Pouya et al., 2019] is that both the grains and
the matrix exhibit ellipsoidal anisotropy and that an ex-
plicit expression of the Hill’s tensor is derived to account for
matrix ellipsoidal anisotropy.

5.3. Example: A self-consistent model of
healing for salt rock

We summarize a self-consistent approach proposed by
the author’s group in [Shen and Arson, 2019a] to predict the
mechanical healing of halite subject to pressure solution.
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Figure 15. Simulation of a cyclic loading with a frequency of 0.03 Hz, a maximum loading stress of 20 MPa and an
amplitude of 10 MPa. (a) The macroscopic stress-strain curve exhibits stiffness degradation due to grain breakage.
(b) the map of microscopic minor stresses shows that some grains do not support any stress, and are thus broken.
Modified and reprinted from [Pouya et al., 2016] with permission from Elsevier.

Inclusions are represented by hollow spheres in which a
spherical pore lies at the intersection between three orthog-
onal grain contact planes. The inclusion thus contains a
pore and eight grain fractions, see Figure 16. Noting rg the
radius of the hollow spherical inclusion, W the thickness of
the shell around the pore, and assuming that W is uniform
around the pore, the spherical void’s diameter is 2rg − 2W .
The plane that contains the axes x and y (respectively y
and z, x and z) is noted XY (respectively YZ, XZ). The REV
is the volume that contains a representative distribution of
inclusion types, which can be defined in terms of inclusion
size, pore size and inclusion orientation (or grain contact
plane orientation).

At the inclusion scale, under normal stress, the solid min-
eral is dissolved at contact planes, the solute diffuses along
the contact planes towards the pore inside the inclusion,
and precipitates at the pore wall. Let us consider one pair
of contact planes. Due to mass conservation principles, the
mass of mineral that diffuses radially from the contact plane
towards the pore inside the inclusion, through the annulus
of area Aew , is equal to the mass of mineral that is dissolved
at the contact plane. Moreover, the radial diffusion flux J (w)
is related to the chemical potential µ according to Fick’s first
law. The energy dissipation per unit volume, noted ∆̇w , is
equal to −J (w)∂µ/∂w [Lehner, 1995]. Under low stress con-
ditions, we assume that the solute concentration C (w) along
the grain boundary is equal to that in the pore, Co [Pluy-
makers and Spiers, 2015, Rutter, 1983, Spiers and Schutjens,
1999]. Integrating the radial energy dissipation increment
over the distance that goes from a point at the periphery
of the inclusion to the pore wall, we obtain the expression
of the total dissipation ∆̇X Y

t on a contact plane. Assuming
that the inclusion work input is entirely dissipated by pres-
sure solution, the total dissipation energy is equal to the
work done by the compressive stress on the contact plane.
The dissolution velocity normal to the contact plane XY is

expressed as:

V X Y
c = D ′SCoΩ

2σe X Y
n

(
2rg W −W 2

)
R∗T

∫ W
o

(2rg w−w2)2

rg −w d w
(135)

where D ′ is the grain boundary diffusion coefficient; S is the
fluid film thickness lying between these two planes; σe X Y

n
is the normal effective stress on plane XY. The rate of min-
eral volume dissolved, V̇X Y , depends on the dissolution ve-
locity on plane XY and on the area of the contact surface:
V̇X Y = (2rg W −W 2)πV X Y

c . The dissolution velocity and the
rate of volume dissolved on planes YZ and XZ can be ob-
tained in the same way. The chemical viscous strain rate ε̇x

is calculated from the dissolution velocity on planes YZ, as
follows:

ε̇x =V Y Z
c /rg (136)

ε̇y and ε̇z can also be determined in a similar way. The min-
eral only dissolves on the contact planes. In addition, we
assume that the mineral precipitates on the pore wall uni-
formly. Thus, the change of thickness δW i at time step ti

can be calculated from the total volume of mineral dissolved
and from the pore’s surface area Ai−1

s at time step ti−1. Dif-
fusion and precipitation processes are illustrated for plane
XY in Figure 16. We finally obtain:

δW i = V̇ i
X Y + V̇ i

Y Z + V̇ i
X Z

Ai−1
s

δt (137)

where δt is the time step.
Note that the stress and strain fields in each inclusion

are assumed to be uniform, i.e. we assume that pressure-
solution produces uniform changes of stress and strain in
the hollow spherical inclusion. Since we present simulations
done with uniform distributions of inclusion orientations,
the matrix is isotropic. We choose an inclusion constitutive
model that reflects a linear dependence of the shear and
bulk moduli of the matrix (µ∗ and k∗) to the porosity of
the REV (φ∗), and we assume that the Poisson’s ratio of the
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Figure 16. The inclusion model in the homogenization scheme of healing. (a) Schematic representation of the in-
clusion. (b) Mass transfer governed by pressure solution, in contact plane XY. Modified and reprinted from [Shen and
Arson, 2019a] with permission from Elsevier.

matrix (ν) is a material constant [Pouya et al., 2016]. The
decrease of REV porosity induces an increase of the matrix
shear modulus µ∗, which results in a change of Hill’s tensor
L∗. The local stresses and strains in the inclusions can be
obtained as follows:

δσi
α−δσ̄i +L∗i

(
δεi

αc +Ci
α
−1

: δσi
α−δε̄i

)
(138)

+δL∗i
(
εi−1
α +δεi

αc +Ci
α
−1

: δσi
α− ε̄i−1 −δε̄i

)
= 0

where the superscript i indicates the time step and the
subscript α refers to a phase (inclusion type). By definition,
the REV stress increment δσ̄i (respectively the REV strain
increment δε̄i ) is the average of the local stress increments
δσi

α (respectively the average of the local strain increments
δεi

α). Using the expression of the dissolution velocity on
each contact plane, the local chemical strain increment
is obtained by calculating the change of inclusion radius
induced by pressure solution under local stressσi

α and local
stress change δσi

α.
The volumetric strain curves obtained by Spiers for wet

salt aggregates [Spiers and Brzesowsky, 1993] are used to
calculate the evolution of brine-saturated halite porosity
during uniaxial creep tests. Following the description of
the experiments, the inclusion size was chosen uniform,
equal to 0.1375 mm. Based on the value of initial porosity,
the initial mean pore radius was found to be 0.103 mm.
We assumed a lognormal distribution for the void radius,
with a coefficient of variance (COV) of 0.0001 mm2. Ex-
perimental results obtained under axial stresses of 1.1MPa
and 3.1MPa were used for the calibration of the elastic and
chemical properties of the inclusions. Inclusions of different
orientations or different initial void radius develop differ-
ent microscopic principal stresses σp . Figure 17 shows the
principal stresses in the inclusions for the test conducted
under an axial stress of 1.1 MPa, after 100,000 seconds

(27h40) and after 250,000 seconds (69h25). Like Figures 14.c
and 14.d, Figure 17 shows the projections of the principal
micro-stresses on the radial and vertical axes. Compression
is plotted in the bottom left quadrant, and tension is plotted
in the top right quadrant. The dots with a lighter color repre-
sent inclusions with smaller initial voids. The major (tensile)
principal stresses are almost perpendicular to the loading
axis, while the minor (compressive) principal stresses tend
to align with the loading direction. The magnitudes of the
minor and major principal stresses increase with time. The
minor principal stress is nearly zero in some inclusions,
while it reaches a value close to -1.5 MPa in some other
inclusions. Inclusions with larger initial voids tend to have
smaller principal stresses.

We simulate uniaxial creep tests on REVs that contain 200
uniformly oriented inclusions, and we study the sensitivity
of the micro-macro model of chemo-mechanical healing
to the inclusion size (rg , set equal to the grain size), to the
initial porosity and to the coefficient of variance (COV) of
the void radius distribution. We vary one parameter at a
time, keeping the other two constant: rg is equal to 0.05mm,
0.15mm or 0.25mm; the initial porosity of the REV is set to
10%, 20% or 40%; the void radius COV is equal to 0.01, 0.05
or 0.1. The results of the parametric study are shown in Fig-
ure 18. The rate of halite densification is known to be highly
dependent on salt grain size. There are less inter-granular
contact planes in the REV if salt crystals are larger. When salt
polycrystals are saturated with brine, the size of salt grains
not only affects the contact area between grains, but also
controls the length of the diffusion path. Results show that
a smaller grain size results in a faster decrease of porosity. It
is interesting to note that porosity stabilizes to a non-zero
value. This is because over time, the macroscopic stress is
sustained by less and less inclusions: the inclusions under
low stress undergo pressure solution at a negligible rate, and
therefore, the full healing time cannot be reached during
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Figure 17. Principal stresses in each inclusion, for a uniaxial creep test under 1.1 MPa: (a) after 100,000s and (b)
after 250,000s. Plots show the projections of the principal micro-stresses on the radial and vertical axes. Compression
is plotted in the bottom left quadrant, and tension is plotted in the top right quadrant. Modified and reprinted from
[Shen and Arson, 2019a] with permission from Elsevier.

the simulation. Correspondingly, the distribution of the void
sizes departs more and more from the initial uniform size
distribution. Under same COV, void size heterogeneity in-
creases with the initial porosity. In heterogeneous samples,
smaller voids heal fast, and larger voids do not heal, which
leads to a non-uniform healing rate over time. For smaller
initial porosity, we observe a uniform healing rate. The rate
of porosity change decreases when the void radius COV
increases. This can be explained by the fact that the stiffness
of inclusions increases when the void size decreases. As
a result, inclusions with small voids undergo higher mi-
croscopic compressive stress, and heal faster. As healing
proceeds in the inclusions that contain smaller pores, the
void radius COV increases, which enhances the difference
of healing rate between inclusions that contain small pores
and inclusions that contain larger pores.

As a result, it was observed that in samples containing
inclusions with different initial void sizes, inclusions with
larger voids had a negligible healing rate, and were slowing
down the overall healing rate of the REV. In samples with
uniformly distributed void sizes, the healing rate was faster,
because all inclusions contributed to the healing of the REV.
In specimens with smaller grain sizes, principal stresses
were more widely distributed in magnitude and the healing
rate was higher. For uniform void size distributions, the
healing rate increased with initial porosity, but the final
porosity change did not depend on the initial porosity of the
sample.

5.4. Example: A Mori-Tanaka model of
chemical weathering for granite

Biotite is an abundant mineral in many granitic rocks.
Upon weathering, biotite expands. The dilation of biotite
minerals is thought to be the cause of crack propagation in
granite. Here, we summarize the Mori-Tanaka homogeniza-
tion scheme proposed by the author’s group in [Shen et al.,

2019] to understand how weathering at the biotite inclu-
sion scale can trigger damage at the REV scale. Following
previous studies [Buss et al., 2008, Goodfellow et al., 2016],
we focus on the mechanism that induces the largest expan-
sion: the replacement of interlayer of potassium cations by
hydrated magnesium cations, which transforms biotite to
vermiculite and smectite.

We use the weathered biotite production rate to calcu-
late the rate of change of the volume of weathered biotite
Vw (m3) in the bedrock REV. The biotite production rate is
assumed to be zero at the onset of biotite weathering. Fol-
lowing empirical observations of biotite weathering [White
and Brantley, 2003], the weathering rate R is a decreasing
power-law function of time:

dVw

d t
= vm

dQ

d t
,

dQ

d t
= RS, R = 3.001×10−5 t−0.603 (139)

Here vm is the molar volume of weathered biotite: vm =
2.10×10−4 m3 mol−1. Q (mol) is the number of moles of
weathered biotite in the REV, R (mol m−2 s−1) is the weath-
ering rate of biotite per unit mineral surface area, and S (m2)
is the total biotite surface area within the REV.

Biotite crystals are represented by oblate spheroidal in-
clusions. We assume that biotites remain oblate spheroids
throughout the weathering process (with variable size and
aspect ratio, though). According to experimental observa-
tions made by Banfield [1988], the conversion of biotite to
vermiculite increases the width of biotite layers by 40%. Un-
der these assumptions, the chemical strain rate in the direc-
tion of the smallest axis of a biotite oblate spheroid (called
thickness in the following), noted ε̇c , is equal to 0.4V̇w /Vb ,
where Vb is the volume of a biotite crystal. In the absence of
data, we consider at first that the elastic behavior of weath-
ered biotite is linear isotropic. Voigt approximation is used
to obtain the shear modulus and bulk modulus of the com-
posite made of biotite and vermiculite, at each stage of the
weathering process.
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Figure 18. Analysis of the sensitivity of the healing rate to (a) grain size (GR), (b) initial porosity (IP), which indicates
the influence of the initial mean pore radius, and (c) pore radius coefficient of variance (COV). Modified and reprinted
from [Shen and Arson, 2019a] with permission from Elsevier.

A Mori-Tanaka homogenization scheme is established to
predict the evolution of the REV stiffness tensor. Each inclu-
sion is assumed to be embedded in an infinitely extended
solid space. Using the stiffness of this infinite medium (C0)
as the matrix stiffness, the homogenized stiffness Chom of
the REV is obtained. The relation between the macroscopic
stress σ̄ and the macroscopic strain ε̄ is as follows:

σ̄=Chom : ε̄−
n∑

i=1
φiCi :ηi : Ai (140)

where φi is the phase fraction (in this case, matrix phase
vs. biotite phase, with different phases for different types of
biotite inclusions, defined by their size, shape and orienta-
tion); Ci is the stiffness of phase i ; ηi is the chemical eigen-
strain in each phase (i.e. the strain field that would exist in
each phase in absence of the other phases around them). In
this study, ηi is induced by the chemical weathering strain
εc . Ai is the concentration tensor of each phase, which can
be calculated based on Eshelby’s theory. The total strain field
in each phase εi is given by:

εi = Ai : ε̄−
n∑

i=1
Bi jη j (141)

where Bi j is the influence tensor [Pichler and Hellmich,
2010]. At each time step, the expansion of biotite crystals
triggers a stress redistribution in each phase of the REV. With
the increase of stress and strain in the matrix, damage ac-
cumulates. We propose a phenomenological damage model
to account for this form of energy dissipation in the REV.
The damage variable is noted D . Based on the mathematical
requirements of the elastic and damaged elastic stiffness
tensor, the Helmholtz free energy is expressed as [Halm and
Dragon, 1998]:

Ψs = 1

2
λ(tr ε)2 +µtr (ε ·ε)+αtr (ε)tr (Dε)+βtr (Dε ·ε) (142)

where α and β are damaged material parameters.
We conduct sensitivity analyses to understand in which

conditions biotite weathering can trigger damage in gran-
ite. First, we study the effects of boundary conditions. We
consider three biotite inclusion families. In all biotite fami-
lies, the thickness of biotite oblate spheroids is 1mm. Each
biotite family is characterized by a different initial radius:
10mm, 6mm or 3mm. The volume fraction of each biotite

family (or phase) is 5%. All biotite inclusions have the same
orientation, with their smaller dimension (‘thickness’ c)
parallel to the loading axis. Figure 19 presents the results
obtained when simulating the effect of biotite weathering
under uniaxial, isotropic and oedometer stress conditions,
with a stress magnitude of 10 MPa. Results confirm that
the net deformation of biotite inclusions is less than the
chemical eigenstrain, due to the mechanical reaction ap-
plied by the matrix. The sharp evolution of biotite thickness
and radius translates into an abrupt evolution of damage
and volumetric strain at the REV level. The lateral constraint
applied in the oedometer conditions delays the accumu-
lation of damage; the expansion of biotite in the thickness
direction is slower than in the other tests. In the case of
free expansion, isotropic loading and uniaxial loading, the
radius of biotite spheroidal inclusions decreases due to the
Poisson’s effects in the matrix. In oedometer tests on the
contrary, the radius of biotite inclusions increases.

Second, we study the effects of depth and of biotite in-
clusion characteristics on weathering. Figure 20 shows the
predicted time evolution of damage in the matrix in various
scenarios. A more extensive set of parametric studies is pre-
sented in [Shen et al., 2019].

Simulation results show that the physical characteris-
tics of biotite crystals - most importantly aspect ratio and
volumetric fraction - have a profound effect on the evolu-
tion of bedrock damage during biotite weathering. These
characteristics exert particularly strong influences on the
timing of the onset of damage, which occurs earlier under
higher biotite abundances and smaller biotite aspect ra-
tios. Biotite orientation, by contrast, exerts a relatively weak
influence on damage. Our simulations further show that
damage development is strongly influenced by the bound-
ary conditions, with damage initiating earlier under laterally
confined boundaries than under unconfined boundaries.
Additionally, results show that depth has no influence on
damage development. To sum up, simulations suggest that
relatively minor differences in biotite populations can drive
significant differences in the progression of rock weakening.
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Figure 19. Effects of the loading conditions on the weathering deformation of aligned biotite inclusions (with thick-
ness direction parallel to the loading direction). From left to right, top to bottom: inclusion thickness; inclusion radius;
matrix damage; REV volumetric strain.

6. Conclusion
Like in the theory of plasticity, closing the formulation of
a CDM model requires postulates on the REV free energy,
the dissipation potential and on the “yield” functions. If the
non-damaged material is linear elastic, then the Helmholtz
free energy (respectively Gibbs free energy) is a polynomial
function, quadratic in deformation (respectively, stress) and
quadratic in damage. The most general expression of the
free energy potential depends on nine constitutive coeffi-
cients. To reduce the number of parameters to calibrate,
it is common to derive the damaged elasticity tensor from
a principle of equivalence between the current damaged
state and a reference non-damaged state subjected to an
effective stress. The effective stress is related to the current
stress by a damage operator. The damage potential is most
often chosen to be a non-negative convex function, which
ensures the thermodynamic consistency of the CDM model.
The damage (or healing) “yield” functions are equal to the
damage (or healing) potentials if flow rules are associate.
In the literature, unilateral effects of crack closure were
mainly accounted for by introducing a Heaviside function
in the expression of the free energy, to deactivate stiffness
damage in compression directions. But damage rotation

challenges thermodynamic consistency and numerical im-
plementation. Healing is often modeled as net damage, i.e.,
as the difference between a damage tensor and a healing
variable. The main challenge with that approach is the
mapping of stresses and other variables on the principal
planes of the damage and healing variables, which are
not necessary equal. Otherwise, accounting for healing in
CDM is similar to coupling plasticity and damage: a heal-
ing potential gh is introduced in addition to the damage
potential gd , and evolution laws of damage and healing
are obtained by solving a problem of minimization under
constraint (gd = gh = 0). Representing damage degradation
and irreversible deformation with only one damage vari-
able and only one dissipation potential is only possible if
the non-damaged model is hyper-elastic – otherwise, the
formulation is thermodynamically inconsistent. A recurrent
issue in CDM is the simulation of the post-peak soften-
ing behavior. Mesh dependency is currently alleviated by
non-local regularization.

Fabric-enriched CDM models are essentially phe-
nomenological models in which the damage tensor is
defined as a convolution of moments of probability of
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Figure 20. Sensitivity of weathering to: (a) depth under oedometric conditions (imposed vertical stress, fixed hori-
zontal displacements) and proportional stress conditions (imposed vertical and horizontal stresses); (b) biotite volume
fraction (or abundance); (c) biotite aspect ratio; and (d) biotite orientation (only one family of biotite inclusions, orien-
tation angle θ in reference to the horizontal axis). In the reference case, the biotite volume fraction is 15%, the biotite
aspect ratio is 3, the biotite orientation is 30o and the boundary conditions are proportional loading with a vertical
stress of 10 MPa and a horizontal stress equal to half of the vertical stress. Modified and reprinted from [Shen et al.,
2019] with permission from Wiley.

microstructure descriptors. The free energy and the dissi-
pation potential are postulated at REV scale. Fabric enrich-
ment is attractive because fabric is measurable by image
analysis and provides a way to predict microstructure evo-
lution through a macroscopic damage variable. However,
the coupling between micro- and macro-mechanisms is
only one way, since damage evolution allows predicting
microstructure changes, but not the opposite.

In micro-mechanics enriched CDM, a two-way coupling
exists between the evolution of microstructure descriptors,
which is dictated by postulated evolution laws, and the
evolution of damage, which influences the state of stress
(and hence the evolution of microstructure). The polyno-
mial expression of the free energy that is postulated in phe-
nomenological models to satisfy symmetry and positiveness
requirements can be derived from micro-mechanical prin-
ciples. Micromechanical evolution laws require mechanical

testing for validation, and not only SEM images. The mi-
croplane theory falls in the category of micro-mechanics
enriched CDM. Constitutive laws are formulated on a plane
and then integrated over all the possible plane orientations
of space to calculate the REV constitutive law. It is assumed
that either the weak plane stresses or the weak plane strains
are components of the macroscopic stress (or the macro-
scopic strain). The equilibrium between the REV stress and
the micro-plane stresses is satisfied in a weak sense, by
applying the principle of virtual work. The projection of the
macroscopic damage tensor onto multiple discrete crack
orientations (usually 42 or 74 for numerical integration pur-
poses), necessary to calculate the damaged stiffness tensor,
makes the implementation of micromechanical damage
models in a finite element code challenging. It is common
to formulate the REV free energy based on micro-mechanics
principles but to assume that micro-crack propagation is
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governed by phenomenological laws, for ease of numerical
implementation.

In homogenization-based models, the REV is viewed
as a homogeneous matrix that contains several sets of in-
clusions. Each set of inclusions is endowed with a specific
stiffness and a specific constitutive behavior. For a strain
controlled problem (respectively, stress controlled prob-
lem), the strain (respectively, stress) in all phases is equal
to the boundary strain (respectively, stress) field plus a per-
turbation strain (respectively, stress) field. In the Eshelby
theory, the stress (respectively, strain) field of the inclusions
is expressed as a function of the stiffness (respectively, com-
pliance) tensor of the matrix and as a function of a so-called
eigenstrain (respectively, eigenstress) field. For ellipsoidal
inclusions embedded in an infinite isotropic matrix, the
perturbation strain (respectively, stress) field is related to
the eigenstrain (respectively eigenstress) field through the
Eshelby tensor. Additionally, the eigenstrain (respectively,
eigenstress) is uniform in each inclusion. In Hill’s theory,
the micro-macro relationship is derived by solving a prob-
lem in which inclusions are viewed as cavities subjected to
displacements or tractions at their boundaries. Hill’s tensor
relates the difference between the micro and macro stresses
to the difference between the micro and macro strains. A
simple relationship exists between the Hill’s tensor and
the Eshelby tensor. Different homogenization schemes are
based on different microstructure assumptions. In the dilute
scheme, the volume fraction of inclusions is negligible and
inclusions are assumed to not interact. In the Mori-Tanaka
scheme, the average of the perturbation field is assumed to
be zero in the matrix, so that the average matrix field (strain
or stress) is equal to the field applied in the far field (strain or
stress). In the self-consistent method, there is no concept of
matrix, and each inclusion is viewed as a domain embedded
in a uniform medium that has the mechanical properties
of the REV (yet unknown). The author’s group proposed
a variety of homogenization-based models of damage or
healing, with account for the chemical eigenstrains of the
inclusions. However, coupling different damage and healing
processes within the same model is still a work in progress.

Some thoughts on how to expand the framework of rock
damage and healing mechanics follow.

(i) The framework of hyperplasticity, which does not
require any postulate on the existence or unique-
ness of yield functions and which automatically
ensures thermodynamic consistency, was never ap-
plied to CDM. There may be an avenue to improve
state-of-the-art damage and healing models in a
similar framework of “hyper-damage mechanics”.

(ii) Mesh dependency in softening models is currently
alleviated by non-local regularization. However,
healing can only happen where damage localizes.
A linkage can be established between preferential
directions of crack propagation and preferential
directions of crack rebonding via a postulated rep-
resentation of microstructure, for instance via a
homogenization scheme. Perhaps the next step is
to couple micro-macro damage and healing models

at the REV scale to discrete fracture mechanics at a
larger scale to understand how damage and healing
localization occurs.

(iii) It is not common to encounter a CDM model in
which two damage variables are defined to describe
the evolution of two different microstructure traits.
There may be an opportunity to define damage
variables by their effects (e.g. by microstructure de-
scriptors) rather than their cause (e.g., compression,
tension, shear), especially for fabric-enriched mod-
els that aim to capture the effect of microstructure
organization on both mechanical properties and
permeability.

(iv) To date, no theoretical framework has been pro-
posed to couple chemo-mechanical damage and
healing processes across the scales. Such a frame-
work would be particularly useful to model the
competition between damage and healing when-
ever both can occur at the same temperature and
pressure conditions (for instance, dislocation glide
vs. pressure solution in salt).

(v) To the author’s best knowledge, healing models
were never implemented in Finite Element codes to
solve engineering boundary value problems before
the author’s group [Shen and Arson, 2019b]. Many
challenges still have to be overcome, especially in
regards to the mapping of net damage.
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Table 1. A few grain and void microstructure descriptors commonly used to define fabric tensors. Note: Grains are
represented by virtual ellipses with same second moment.

Name Sketch Definition

Grain size distribu-
tion

Pdf of a grain size (typically, largest segment that can be fit in the
virtual ellipse).

Grain orientation
distribution

Pdf of the orientation of the major axis of the virtual ellipses.

Grain aspect ratio
distribution

Pdf of the ratio between the smaller and larger axes of a virtual
ellipse.

Grain roundness
distribution

Pdf of the ratio of the volume (or area) of a grain over the volume
of a sphere (or area of a circle) whose diameter equals the length
of the virtual ellipse’s major axis.

Grain solidity distri-
bution

Pdf of the ratio of a grain area over the area of the grain’s circum-
scribed circle.

Branch length distri-
bution

Pdf of the lengths of the segments that link the centroids of two
grains in contact (defined as a branch).

Branch orientation
distribution

Pdf of the orientation of a branch.

Coordination num-
ber distribution

Pdf of the number of grains in contact with a given grain.

Local solid volume
fraction distribution

Pdf of the solid volume fraction over a polygon with edges match-
ing grains centroids.

Pore size distribu-
tion

Pdf of a pore size (typically, largest segment that can be fit in a
virtual ellipse)

Lineal-path func-
tion L(z)

Probability of finding a line segment of length z wholly in one of
the phases (e.g. grain or pore), when randomly thrown into the
sample.

Chord length distri-
bution

Pdf of line segments contained fully within a phase (e.g., grain or
pore) and extending between two points on the object’s surface
(say, pore surface or mineral surface).

Grain/void nearest-
surface distribution
h j (r )

Probability that at an arbitrary point, the nearest surface of a par-
ticle or pore of phase j lies at a distance between r and r +dr .

Void exclusion prob-
ability EV (r )

Probability of finding a spherical region of radius r that is empty
of solid particle center.
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