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Abstract. Most triaxial tests are fraught with substantial membrane pen-
etration errors. A simple correction procedure for data obtained from
various tests is proposed. Correction formulas for the membrane pen-
etration error have been derived for different types of tests including
not perfectly saturated soils. In particular, a correction of the undrained
cyclic stress paths is presented in detail. It is demonstrated that the cor-
rection for the membrane penetration error is indispensable for a re-
alistic estimation of the cyclic resistance ratio in coarse- and medium-
grained liquefiable soils. A MATHEMATICA code for the correction of lab-
oratory data is given. An analogous MATLAB code is available from the
authors. Without the correction many results could lie far on the unsafe
side. This is the case especially for the undrained cyclic loading.
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1. Introduction
In triaxial tests, the isochoric (constant-volume) conditions
are approximated by imposing undrained conditions (clos-
ing the pore-water valve) and by keeping the sample per-
fectly saturated. A discrepancy between the undrained and
isochoric conditions is caused by the so-called membrane
penetration (MP) and by the compressibility of the sub-
stance. This problem is the main subject of the presented
paper.

In the opencast lignite mines like Hambach (Germany),
see Fig.1, the loosely dumped granular layers may reach
the depth of 400 m. For the re-cultivation of the region,
the stability of such layers after ground-water flooding is of
great interest. According to the local seismic data, small to
moderate earthquakes may be expected in the region. They
may lead to spontaneous liquefaction of loose soil deposits
and to catastrophic events known as settlement flow (ger.
"Setzungsfließen"), especially from East Germany. Hence,
the resistance to liquefaction should be well evaluated.

For reliable predictions of cyclic stability of loose deposits
and their slopes, undrained cyclic triaxial tests are necessary.
A parameter commonly used is the cyclic resistance ratio
(CRR) after Vaid et al. [1990]

CRR(N f = 10) = 1

2
qampl/p0 (1)

If N f = 10 undrained triaxial cycles with the stress ampli-

tude qampl are applied starting from the isotropic effective
pressure p0, then a liquefaction is expected. Of course, CRR
may depend not only on a type of soil but also on the density
and some more subtle parameters of soil structure, aging
etc. Due to the influence of the MP, the experimental evalua-
tion of the CRR needs to be critically revised. In this context,
the MP has numerous literature Ansal and Erken [1996],
Frydman et al. [1973], Haeri and Shakeri [2010], Kiekbusch
and Schuppener [1977], Newland and Alley [1957], Raju and
Sadasivian [1974], Raju and Venkatramana [1980], Ramana
and Raju [1982], Roscoe et al. [1963], Seed et al. [1989],
Tokimatsu and Nakamura [1986], Vaid and Negussey [1984],
Wichtmann [2005], Wichtmann et al. [2019].

Unfortunately, most authors deal with empirical formu-
las for the MP. They are based on fragmentary data and can
hardly be considered as proven in the sense of statistics. Cor-
relations of the MP with the grain size distribution alone and
without asperity seem disputable. Only few authors Ramana
and Raju [1982], Tokimatsu [1990], Wichtmann et al. [2019]
deal with the accumulation of the MP during cyclic tests.
The proposed overall MP-factors can be applied to the end
results only. To the best knowledge of the authors, no incre-
mental procedure to eliminate the MP-effect from the mea-
sured paths has been proposed as yet. This article tries to fill
this gap providing a general approach to the MP based on
the incrementally linear constitutive formalism. Neverthe-
less the empirical formulas can still enter the calculation via
the parameter kMP , see Eq. (2).

During evaluation of the CRR, a difference between
undrained and isochoric conditions due to the MP may
be of importance as demonstrated in Section 5. For fine
materials, the influence of the MP is negligible but for

coarse-grained materials it is essential to purify the data
from the MP-errors. The MP is known for affecting the
triaxial data for soils with d20 > 1 mm. However, also for
medium-grained sand the MP-errors can be quite consider-
able as demonstrated in Section 5.

Grains penetrate into the membrane and this spoils
the accuracy of the volumetric deformation, if measured
via the pore water system. Another effect of the MP is the
discrepancy between undrained and isochoric condition.
Undrained and isochoric stress paths may strongly differ
despite perfect saturation of the sample. The isochoric
conditions may be also spoiled by the compressibility of
the pore fluid due to poor saturation. Poor saturation can
be easily detected via the Skempton parameter B = u̇/ṗtot

being smaller than unity, Skempton [1954]. Unfortunately,
the diagnosis of the MP effect is more complicated. Figure
2 presents the CRR of the Karlsruhe sand from samples of
different size. The influence of the diameter of the sample
is evident. Different ratios of the surface of the membrane
to the volume of the sample cause different MP errors and
hence different CRRs. Evidently, the membrane penetration
affects the CRR values. This will be examined in the context
of liquefaction of deposited soils.

1.1. Notation
Geotechnical sign convention and homogeneous stress

and strain fields are assumed. The usual triaxial symme-
tries hold. Roscoe invariants for strains and stresses (work
conjugated) are used. The corresponding stiffness is written
as a 2 × 2 matrix. The superposed dot ṫ denotes a small
increment of t. Effective stress is written without dash
throughout the text. A consistent system of units should
be used with [m], [kN], [kPa], [s] except for the empirical
formulas wherein the units are specified.

Essential variables:

ε̇a , ε̇r = axial and radial strain rate components
ε̇vol = ε̇a +2ε̇r , ε̇q = 2

3 (ε̇a − ε̇r ) Roscoe strain rates
σa , σr = axial and radial stress components
p = (σa +2σr )/3, q =σa −σr Roscoe stress invariants
Vw ,V = water volume and volume of the triaxial sample
u = pore water pressure and air pressure in the bubbles
ttot =t+u total stress component
K ,G = bulk modulus, shear modulus
Kpq ,Kqp = coupling terms
t∗ = value of t blurred by the MP
h,h0 = ṗ/q̇ inclinations of stress increment
tMP = t due to MP
tampl = amplitude of t
Ka ,Kw ,Ks ,Km = bulk modulus of the substance (air, water,
quarz, mixture)
Me = qmax/p inclination of the tx. extension failure line
N f number of cycles to failure
n = porosity
kMP = proportionality factor from Eq. (2)
nK ,nk = exponents for K ∼ pnK and kMP ∼ pnk

Sr = degree of saturation
SMP = a membrane parameter after Nicholson et al. [1993]
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Figure 1. View of the extraction side of the lignite opencast mine Hambach (on the left-hand side) with a surface of 85
km2 and depth 400 m created with coal excavator and dumping site (right hand side) in October 2018
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Figure 2. CRR as a function of the number of cycles
N to failure (2εampl = 10 %). Karlsruhe Sand with rel-
ative density Dr0 ≈ 0.4 but different sizes (diameter =
height).

Z , pZ = parameters of stiffness by Osinov et al. [2016]
hB ,nB = parameters of compression curve by Bauer [1992]
Amem = surface of the membrane
AS , A = original and modified parameter by Skempton [1954]

2. Volumetric strain measured via
the pore water system

The MP is caused by changes in the effective radial stress
σ̇r , Fig. 3a. In drained tests, the MP affects the volume of
pore water squeezed out from the sample and hence ε̇vol ≈
∆Vw /V is not exactly equal to the volumetric deformation of
the soil skeleton. The undrained strength can be deceitfully
large compared to the true isochoric value cu of loose sam-
ples, Fig. 3b. As a portion of the volumetric strain rate, the
MP-error can be assumed proportional to the radial stress
rate

ε̇MP
vol = σ̇r /kMP , (2)

wherein the factor kMP may be treated as a constant within
a single increment. Sophisticated stress functions are being
used to quantify the MP. An additional radial compression
due to the tension in the membrane is neglected(1) here.

(1)For rough estimation of the additional stiffness, the elasticity of the
membrane EM ≈ 2.1 MPa and the thickness tM = 0.3 mm. Changes of ra-
dial strain εr of the sample are identical with the strain in the membrane.

In this work, a perfectly saturated triaxial sample, Sr = 1
with incompressible substance

Km = [n(1−Sr )/Ka +nSr /Kw + (1−n)/Ks ]−1 =
[n/Kw + (1−n)/Ks ]−1 ≈∞ (3)

is assumed everywhere except Sections 4.3 and 4.4. Let the
sample be tested under perfectly drained conditions, u̇ = 0.
The volume V̇w of pore water squeezed out from the sam-
ple can be measured via the pore water system. The corre-
sponding volumetric deformation rate is ε̇∗vol = V̇w /V . There
are two origins, how the water is squeezed out of the sample:

• compression of skeleton due to σ̇a > 0 and σ̇r > 0
• MP due to σ̇r > 0

The apparent volumetric strain rate ε̇∗vol can be decomposed
into the true deformation ε̇vol = ε̇a +2ε̇r of the skeleton and
the MP contribution

drained: ε̇∗vol = V̇w /V = ε̇vol + ε̇MP
vol = ε̇vol + σ̇r /kMP (4)

The true strain rate ε̇vol = V̇ /V is defined using the volume
V of the envelope (a cylinder or a barrel), that encompasses
all grains, see the green line in Fig. 3a. It turns out that de-
spite undrained conditions and Km =∞, the true deforma-
tion ε̇vol 6= 0 is possible.

Under perfectly undrained conditions, V̇w = 0, stress in-
crement σ̇r > 0 may wrinkle the membrane but it cannot
shift it. The volume of the closed mass cannot change be-
cause of Km =∞. A closer look at the boundary surface re-
veals that grains are moved slightly outwards and pore wa-
ter is pressed slightly inwards the initial boundary surface.
It is essential to understand that the average boundary sur-
face need not be moved for true ε̇vol to occur. Changes in the
”amplitude of wrinkles” make the undrained test not exactly
isochoric, Fig. 3 a. From Eq. 4 one obtains

undrained: 0 = ε̇vol + ε̇MP
vol = ε̇vol + σ̇r /kMP (5)

and hence σ̇r > 0 looses the undrained sample by ε̇vol =
−ε̇MP

vol = −σ̇r /kMP . It happens despite the incompressibility
of the substance. The MP can be seen as connected in series
with the constitutive response of the skeleton: the elements
have the common stress rate σ̇r and the additive strain rates
given in Eq. (4).

For a sample of diameter 2r = 100mm one obtains, according to the boiler
formula, σ+

r = 2tM EM εr /(2r ). This additional radial stress due to εr = 10%
is σ+

r = 1.2 kPa only. The effect seems negligible indeed.
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Figure 3. a) The membrane encompassing an
undrained sample with incompressible substance
cannot in average be moved. However, grains pene-
trate into the membrane and the contact surface is
roughened. The diameter of a cylinder that encompass
all grains increases. b) A triaxial compression test on a
loose undrained sand sample.

During an undrained triaxial compression test, q̇ > 0,
loosely compacted samples show relaxation, ṗ < 0, due
to restricted contractancy. This effect is better known as
the pore pressure build-up, and can be quantified by the
well known parameter A by Skempton [1954]. Actually, the
increase u̇ is a consequence of the relaxation and not vice
versa(2).

The relaxation is a constitutive phenomenon which can
be quantified using a dilatancy rule from the literature
Rowe [1962], Taylor [1948]. Under undrained conditions,
the relaxation σ̇r < 0 causes ε̇MP

vol < 0 and ε̇vol > 0. Hence,
the undrained shear is not isochoric but slightly dilatant.
Undrained stress paths reach therefore larger deviatoric
stresses compared to the isochoric ones, Fig. 3b. This
overestimation of isochoric strength can be dangerous in
practice.

3. Removal of the MP-error from
the stiffness

In triaxial tests, the MP-error can be evaluated using the
rates ṗ, q̇ , ε̇vol, ε̇q of the well known Roscoe invariants. The
MP appears on the lateral surface of the sample only, and
hence

ε̇MP
r = 1

2 ε̇
MP
vol and ε̇MP

a = 0 (6)

and ε̇MP
q = 2

3 (ε̇MP
a − ε̇MP

r ) =− 2
3 ε̇

MP
r =− 1

3 ε̇
MP
vol (7)

(2)This must be so because effective stress paths under undrained
shearing are almost identical as the ones under isochoric shearing of anal-
ogous dry samples.

The incremental stiffness can be determined from different
stress rates and strain rates applied/measured at the same
stress(3). The volume measurement via pore water system
gives the apparent values ε̇∗vol = ε̇vol+ε̇MP

vol and ε̇∗q = ε̇q +ε̇MP
q ,

which lead to an inexact material stiffness

soil + MP:
{

ṗ
q̇

}
=

[
K ∗ K ∗

pq
K ∗

qp 3G∗
]
·
{
ε̇vol + ε̇MP

vol
ε̇q + ε̇MP

q

}
(8)

with

ε̇MP
vol = σ̇r

kMP
and ε̇MP

q =− σ̇r

3kMP
(9)

and with

σ̇r = ṗ − q̇/3 (10)

The components K ∗,K ∗
pq ,K ∗

qp and G∗ are similar to the con-
stitutive components K ,Kpq ,Kqp and G but they are blurred
by the MP-contributions. Pure constitutive stiffness can be
extracted from Eq. 8. In Eq. (8), the MP-error has been as-
sumed to appear in strain components only(4). Mathemati-
cally, Eq. 8 can be resolved for true constitutive stiffness of
the skeleton as follows{

ṗ
q̇

}
=

[ K Kpq
Kqp 3G

]
·
{
ε̇vol
ε̇q

}
(11)

with the full form of stiffness

1

A∗

[
G∗K ∗−3kMP K ∗−K ∗

pq K ∗
qp /3 3G∗K ∗−K ∗

pq (3kMP +K ∗
qp )

3G∗K ∗− (3kMP +K ∗
pq )K ∗

qp 9G∗(K ∗−kMP )−3K ∗
pq K ∗

qp

]
and wherein A∗ =G∗−3kMP +3K ∗−K ∗

pq−K ∗
qp . A perfect test

without the MP corresponds to the limit kMP →∞. Similarly,
one may find the full form of the matrix used in Eq. 8[

K ∗ K ∗
pq

K ∗
qp 3G∗

]
= (12)

1

A

 GK +3kMP K −Kpq Kqp /3 3GK +3kMP Kpq −Kpq Kqp

3GK +3kMP Kqp −Kpq Kqp 9GkMP +9GK −3Kpq Kqp


wherein A =G +3kMP +3K −Kpq −Kqp . Eqs. 11 and 12 can
be easily derived with the MATHEMATICA, Script 1, Appen-
dix C. The components K ∗,G∗, . . . are denoted as K,G ... and
K ,G , . . . as Ke,Ge ... in the Script 1.

4. Correction of stress paths
The influence of the MP is evaluated for isotropic compres-
sion and for undrained stress paths. In both cases, the cor-
rection is derived for the special case of incompressible sub-
stance Km =∞, and extend the formulas for Km <∞. In one
case the correction of the measured stress path is not neces-
sary.

(3)Some authors Gudehus [1979], Knittel et al. [2020] prefer to use the
so-called stress envelope to describe such incremental response.

(4)Actually, the stress measurement can also be affected because the ax-
ial force is divided by an inexact horizontal cross-section of the sample.
Using the nominal effective stress that relates current loading to the ini-
tial geometry of the sample one could argue that no such ”assumption” is
needed. However, to be exact, radial stress σr should always be interpreted
as a Cauchy stress component.
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4.1. Undrained isotropic compression with
Km =∞, no effect of the MP

A sample with isotropic elastic stiffness is examined
under undrained, isotropic compression with ṗtot > 0
and q̇ tot = q̇ = 0. The substance is incompressible. From
V̇w = 0 or ε̇∗vol = 0, one finds ε̇vol = −σ̇r /kMP and ε̇q =
ε̇∗q + σ̇r /(3kMP ). From Eq. 10 with q̇ = 0, one obtains simply
σ̇r = ṗ {

ṗ
0

}
=

[
K 0
0 3G

]
·
{ −ṗ/kMP
ε̇∗q + ṗ/(3kMP )

}
(13)

From the first line, it follows(5) that ṗ = 0 and from the sec-
ond line ε̇∗q = 0. In consequence, u̇ = ṗtot and the MP for
ṗ = σ̇r = 0 has no effect. In the more general case,{

ṗ
0

}
=

[ K Kpq
Kqp 3G

]
·
{ −ṗ/kMP
ε̇∗q + ṗ/(3kMP )

}
(14)

with det

−K −kMP Kpq kMP

−Kqp 3G kMP

 6= 0, (15)

one can also obtain the solution ṗ = 0 and ε̇∗q = 0 with iden-
tical consequences as before. Formally, however, the singu-
larity should be excluded, see Eq. 15.

4.2. Correction of undrained stress paths for
the MP at Km =∞

Consider an undrained triaxial compression test with
q̇ > 0 and a simple, incrementally linear constitutive relation
with the well known elastic constants K ,G supplemented by
the coupling term Kpq between ṗ and ε̇q .

isochoric:
{

ṗ
q̇

}
=

[ K Kpq
0 3G

]
·
{ 0
ε̇q

}
(16)

In comparison to Eq. (11), the simplification Kqp = 0 is as-
sumed. The coupling term Kpq depends on the stress ratio
q/p, on the void ratio e and on the sign of q̇ . This com-
ponent can be analytically quantified with the Skempton’s
equation u̇ = B

(
σ̇tot

r + AS (σ̇a − σ̇r )
)

for isochoric conditions.
It is of advantage to modify this original formula using A =
B(AS − 1

3 ) and make it also valid for triaxial extension

u̇ = B ṗtot + A|q̇ | (17)

Using B = 1 (i.e. Km =∞), Eq. (17) can be simplified to A|q̇ | =
−ṗ and comparing this to Eq. 16 one obtains

Kpq =−3G A sign(q̇) (18)

Alternatively, one of the well established dilatancy rules after
Rowe [1962] or after Taylor [1948] can be used. For example,
the Taylor dilatancy rule yields

Kpq = K (q/p −p
6M/2) (19)

with M =
{

MC = 6sinϕ
3−sinϕ for ε̇q > 0

ME =− 6sinϕ
3+sinϕ for ε̇q < 0

(20)

In the lab, Kpq can be obtained from K ∗
pq ,K ∗

qp ,G∗,K ∗ and
from kMP using Eq. 11.

(5)The special case with K /kMP =−1 is not realistic

The inclination ṗ/q̇ of the stress path from Eq. 16 for iso-
choric conditions can be compared with ṗ/q̇ from

undrained:
{

ṗ
q̇

}
=

[ K Kpq
0 3G

]
·
{ −σ̇r /kMP
ε̇∗q + 1

3 σ̇r /kMP

}
, (21)

wherein σ̇r = ṗ − q̇
3 . The true skeleton deformations are

ε̇vol =−ε̇MP
vol =−σ̇r /kMP and ε̇q = ε̇∗q−ε̇MP

q = ε̇∗q+σ̇r /(3kMP ),
wherein ε̇∗q is the non-purified deviatoric strain rate. From
(16) and from (21) one obtains

ṗ

q̇

∣∣∣∣
isochoric

= Kpq

3G
and

ṗ

q̇

∣∣∣∣
undrained

= GK +kMP Kpq

3G(K +kMP )
, (22)

respectively. The undrained inclination from Eq. (22)2 is
steeper than the isochoric inclination from Eq. (22)1 be-
cause Kpq < 0. Eq. (22)2 corresponds to the ratio K ∗

pq /(3G∗)
if expressed with true material components of stiffness from
Eq.12 and with Kqp = 0, see Fig. 4.

Equations (21)2 and (22)2 can be easily derived with
MATHEMATICA in Appendix C, Script 2. The measured incli-
nation from Eq. (22)2 is denoted as h = ṗ/q̇ . The purified
(without the MP) inclination h0 = ṗ/q̇

∣∣
isochoric from (22)1

can be easily calculated (for each increment) from (22)2

using

h0 = h +β(h − 1

3
) with β= K /kMP (23)

The MATHEMATICA derivation is straightforward (Appendix
C, Script 3). A given undrained stress path can be converted
to the isochoric one using (23) increment by increment. True
isochoric paths are of practical interest and hence (23) is of
importance. In Section 4.4, this conversion rule will be ex-
tended to the MP with compressible substance, Km <∞.

In the following example, a cyclic stress path, stateU,
is generated analytically. It will be treated as if it were an
”undrained” path measured in the lab and needed a cor-
rection to the isochoric path. The increments

{
ṗ, q̇

}
with

inclinations h = ṗ/q̇ are given. One calculates h0 from (23)
preserving the deviatoric components q̇ , i.e. only the pres-
sure increments ṗ = h0q̇ are modified. Finally, the corrected
isochoric path is written, stateI, and both paths are plot-
ted for comparison (MATHEMATICA in Appendix C, Script
4).
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Figure 4. ”Measured” undrained stress path and cor-
rected isochoric stress path. For simplicity, the bulk
stiffness K of the skeleton and kMP are assumed con-
stant in this example.
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Note that the undrained triaxial compression ε̇q > 0
needs a stronger correction than the undrained triaxial
extension ε̇q < 0. According to (23), for h = 1

3 one obtains
h = h0 and no correction is needed. Indeed, a triaxial com-
pression with the inclination ṗ/q̇ = 1

3 corresponds to σ̇a > 0
and σ̇r = 0. According to Eq. 2 no MP effects appear at
σ̇r = 0.

4.3. Isotropic compression with Km <∞,
Skempton parameter B

A good starting point for the analysis of compressible
soils is a poorly drained test in which the pore pressure can
change. The increase of pore pressure, u̇ > 0, at Km < ∞
reduces the relative volume V̇w /V of water squeezed out
from the sample by u̇/Km . This can be taken into account in
Eq. 4 as follows,

V̇w /V = ε̇vol + σ̇r /kMP − u̇/Km (24)

The deformation of the substance is assumed(6) to be u̇/Km .
The bulk modulus of the substance is

Km = [n(1−Sr )/Ka +nSr /Kw + (1−n)/Ks ]−1 (25)

with Kw ≈ 2.2GPa and Ks ≈ 50GPa

From the general Equation 24, one can easily obtain the per-
fectly undrained condition, V̇w = 0, or perfectly drained con-
dition, u̇ = 0, as special cases.

Undrained isotropic compression tests, q̇ = q̇ tot = 0, with
incompressible substance Km = ∞ have been already dis-
cussed in Section 4.1. It could be concluded, that no MP ap-
pears, σ̇r = ṗ = 0, and that the Skempton parameter is B =
u̇/ṗtot = 1. However, even a small number of little gas bub-
bles renders the substance compressible, Km < ∞. In this
case, the MP can affect Skempton parameter B , and there-
fore the B-test will be examined in more detail here.

The most important component of Km is stiffness of the
air Ka ≈ ua ≈ u +uatm. For fast loading, one may consider
using the adiabatic stiffness Ka = 7

5 ua . In small air bubbles,
the absolute air pressure ua can be much higher than the ab-
solute water pressure, uw = u +uatm. This can be quantified
with the Young-Laplace equation ua = uw + 2

ra
γa/w , where

ra is the radius of the bubble and γa/w ≈ 73 ·10−3 N/m is the
surface tension. Additionally, one can take into account the
solvability (Henry’s law) and diffusion of air in water. In the
incremental stress-strain relation, Km = const is assumed.

An undrained isotropic compression (a so-called B-Test)
corresponds to ṗtot > 0, q̇ tot = q̇ = 0 and V̇w = 0. From (24)
with V̇w = 0 and σ̇r = ṗ − 1

3 q̇ = ṗ one obtains

0 = ε̇vol + ε̇MP − u̇/Km or u̇/Km = ṗ/kMP + ṗ/K (26)

Now, the definition of the Skempton parameter B can be
used: one substitutes u̇ = B ṗtot and ṗ = (1−B)ṗtot into (26)2

and then eliminates ṗtot = ṗ + u̇. This leads to the following
expression

B = Km(K +kMP )

K Km +K kMP +KmkMP
(27)

(6)By this assumption, the small volumetric deformation ṗ/Ks of indi-
vidual grains due to effective pressure are disregarded.

At the limit kMP →∞, the well known formula B = Km/(K +
Km) = u̇/(u̇ + ṗ) is recovered, which corresponds to equal
volumetric deformation rates of the skeleton and the sub-
stance. At the limit Km → ∞, the Skempton parameter is
B = 1, independently of kMP .

For completeness, the isotropic compression under
drained conditions is considered: ṗtot > 0 and q̇ tot = q̇ = 0,
u̇ = 0, but also ṗtot = ṗ = σ̇r . Moreover, the substance
cannot be deformed, u̇/Km = 0. In this case

ε̇∗vol = V̇w /V = ṗ/K + ṗ/kMP (28)

holds. The true volumetric strain of the skeleton is ε̇vol =
ṗ/K , of course.

4.4. Correction of undrained stress paths for
the MP at Km <∞

Using the volumetric strain measured via the pore water
system and having Km <∞, one observes the following in-
exact strain rates

ε̇∗vol =
V̇w

V
= ε̇vol + σ̇r /kMP − u̇/Km (29)

and ε̇∗q = ε̇q − σ̇r

3kMP
, (30)

wherein ε̇vol and ε̇q are true deformations of the skeleton,
see Eqs. 8 and 24. Note that Km affects equally ε∗a and ε∗r and
hence, contrarily to kMP , stiffness Km does not affect ε̇∗q . The
corresponding (not constitutive) stress-strain relations are{

ṗ
q̇

}
=

[
K ∗ K ∗

pq
K ∗

qp 3G∗
]
·
{
ε̇vol + σ̇r /kMP − u̇/Km
ε̇q − 1

3 σ̇r /kMP

}
, (31)

wherein σ̇r = ṗ − q̇
3 . As in the previous section, the incli-

nation h = ṗ/q̇ can be determined for the special case of
Kqp = 0 under undrained conditions, V̇w = 0, i.e. ε̇∗vol = 0.
Additionally, it is assumed that the cell pressure does not
change,

u̇ + σ̇r = σ̇tot
r = 0 or u̇ =−σ̇r (32)

With these assumptions, the true constitutive relation can
be written in the form{

ṗ
q̇

}
=

[ K Kpq
Kqp 3G

]
·
{−σ̇r /kMP + u̇/Km
ε̇∗q + 1

3 σ̇r /kMP

}
=

[ K Kpq
0 3G

]
·
{−σ̇r /k̄
ε̇∗q + 1

3 σ̇r /kMP

}
(33)

with the abbreviation 1/k̄ = 1/kMP + 1/Km . Similarly as in
the previous section, one obtains

ṗ

q̇

∣∣∣∣
isochoric

= Kpq

3G
and

ṗ

q̇

∣∣∣∣
undrained

= GK + k̄Kpq

3G(K + k̄)
(34)

and hence the purified inclination is

h0 = h +βm(h − 1

3
) with βm = K

k̄
= K

kMP
+ K

Km
(35)

5. Recommended correction for
undrained cyclic tests

In the previous section, the effect of the MP was discussed
for individual stress increments. Here, a complete correction
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procedure is presented for an undrained cyclic test. Inter-
pretation of these tests was actually the motivation for the
whole research project. Unfortunately, the knowledge of the
stress path and the membrane does not suffice to apply the
correction. Difficulties arise from the variability of the ef-
fective bulk modulus of soil K (p) and kMP (p) with effective
pressure p.

According to Eq. 23 or Eq. 35 the correction from h to h0,
depends on β(p). The problem arises at p → 0, i.e. shortly
before liquefaction, during the so-called cyclic mobility. For
simplicity in this paragraph, nearly isotropic conditions, p ≈
σr , are assumed. The limit of

β= K (p)

kMP (p)
∼ pnK

pnk
= pnK −nk (36)

at p → 0 depends upon empirical formulas used. From (40)
one obtains after Nicholson et al. [1993] kMP ∼ pnk with
nk = 1. This exponent is only nk = 2

3 if obtained from (43)
after Baldi and Nova [1984]. The constitutive bulk modulus
of sand skeleton can be approximated by

K (p) =
(1+e)hB

(
3p
hB

)1−nB

3enB
(37)

with the material constants(7) nB ≈ 0.2 and hB ≈ 3 · 109kPa
after Bauer [1992]. Hence K ∼ pnK with nK = 4

5 has an expo-
nent that can be larger or smaller than nk .

The combination of Eq. (37) with kMP by Nicholson et al.
[1993] leads to huge corrections

lim
p→0

β= lim
p→0

pnK −nk ≈ lim
p→0

p−1/5 =∞ (38)

but using Eq. (37) with kMP by Baldi and Nova [1984] the
analogous correction dwindles, β→ 0. Evidently, inaccurate
description of K (p) and kMP (p) may dominate and fully blur
the MP-correction procedure at small pressures.

It seems reasonable to reduce the MP-correction at small
p irrespectively of the exponents nk and nK used in kMP ∼
pnk and K ∼ pnK . At very small values of p this correction is
of secondary importance for practical applications. There-
fore a redefinition of the liquefaction point is proposed. The
conventional definition of cyclic liquefaction is based on the

strain amplitude which is required to surpass εampl
q = 10%,

cf. Lee and Fitton [1969], Towhata [2008], Wichtmann et al.
[2019] (some authors propose even 2εampl

q = 15%). However,

before 2εampl
q = 10% is attained, several nearly large cycles

need to be applied.
In order to mitigate this problem, the ”increased mobil-

ity” cycles can be simply cropped and thus eliminated from
the correction procedure. For this purpose, we propose the
following inequality as a redefinition of the point of cyclic
liquefaction

p < 0.5 qampl/Me with Me = 6sinϕ/(3+ sinϕ) (39)

(7)The granular hardness hB ≈ 3 · 109kPa was measured upon the
isotropic unloading. A much smaller granular hardness hB ≈ 3 · 107 kPa
is obtained from first loading compression tests and this standard value is
usually given in the literature. Using such hB in Eq. (37) one should increase
the resulting K (p) roughly by a factor 2.5. It follows from the proportional-
ity K ∼ h

nB
B , cf. Eq. (37). An increase of K by factor 2.5 ≈ 1000.2 corresponds

to a factor 100 at hB .
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Measured data cropped

Figure 5. An undrained cyclic test

continued up to εampl
q = 10% and cropped just after the

condition (39) is reached.

In consequence of Eq. 39, the liquefaction occurs earlier,
i.e. after a smaller number of cycles N f or, equivalently, at
slightly smaller CRR, Fig.5. Using the definition of Eq. 39 the
final effect of the MP-correction causes still a substantial
reduction (8) of the CRR-value of soil as shown in Fig. 8.

The correction procedure of the undrained data (ob-
tained from the lab) can be summarized in the following
flow-chart

(1) Input of the measured stress path
(2) Evaluation of the bulk stiffness K of skeleton. Usu-

ally K (p,e) is a barotropic function of the current ef-
fective pressure. Eq. (37) was originally proposed by
Bauer [1992] and is commonly used in hypoplastic
constitutive models, such as Wolffersdorff [1996], as
a stiffness upon first loading. This K (p) should be
increased roughly by a factor two(9). In Appendix D,
the unloading portion of the compression curve is
used for the calibration of hB and nB , Fig. 11 below.
No increase of stiffness is required in such case.

(3) The bulk modulus K from Eq. (37) is known to be
overly stiff for small pressures, p < 25 kPa. Using the
factor ζ= (1−exp(−p/pZ ))Z−nB proposed by Osinov
et al. [2016], the reduced stiffness is K̄ = K ζ. The cor-
rection with Z = 2 and pz = 25 kPa is shown in Fig.
7.

(8)Hence the modification of K (p) in the step (3) of the flow-chart.
(9)The relaxation corresponds to unloading which is approximately

twice stiffer
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(4) At first, the start point (pc
0, qc

0) of the corrected path
is set to the actual start point (p0, q0) of the mea-
sured path.

(5) For each increment: values of σr , p are read and
the MP coefficient kMP = σr

SMP Amem/V0
is evaluated,

see Appendix B. The correction factor β= K̄ /kMP is
evaluated for the current p,e. The corrected stress
increment is q̇c = q̇ and ṗc = ṗ +β(ṗ − q̇/3). After
the update, the corrected stress is qc = qc + q̇c∆t ,
pc = pc + ṗc .

(6) The incremental correction is continued until
the measured stress path reaches the liquefac-
tion pmin 6 0.5qampl/Me . After this condition(10) is
satisfied, the procedure is stopped.

(7) The final, corrected pc (after all cycles) is always
smaller than the final p. The corresponding differ-
ence,∆p = p−pc > 0, is added to the corrected path,
Fig. 6, and thus this path is shifted along the p-axis
to the right. The end-points of both measured and
corrected paths coincide but the starting point of
the corrected path is artificially increased beyond
p0.

(8) The original cyclic resistance is CRR = 1
2 qampl/p0

and the corrected one is CRRc = 1
2 qampl/pc

0. As
shown in Fig. 8-bottom-left, the corrected value is
much smaller.

For details on the performed test see Appendix A and the
MATHEMATICA source code of the correction procedure is
given in Appendix C.

6. Discussion
The portion of corrected stress path beyond the failure line
or in the tensile zone is completely fictitious, of course, and
may seem counterintuitive. The fictitious (shifted) starting
point p0 is also challengeable because the true behaviour of
the sample in the vicinity of the increased p0 is unknown.
Therefore, two alternative ideas could be considered in fu-
ture:

One alternative evaluation of undrained cyclic tests for
CRR could be:
(1) conduct several undrained cyclic tests with different
ratios 1

2 qampl/p0

(2) correct each path
(3) crop the corrected paths at liquefaction(11)

(4) count the number of cycles N of each cropped path
(5) interpolate between corrected N values in order to ob-
tain CRR = 1

2 qampl/p0 at exactly N = N f = 10
In comparison to this, an advantage of the ”shift p0”-
method is its applicability to a single undrained cyclic test
with N = 10.

The second alternative is suitable especially for large
MP-corrections. It needs a single undrained cyclic test only:

(10)Using the liquefaction criterion ε
ampl
q = 10% would render the cor-

rection of CRR overly sensitive to the small stiffness parameters Z and pZ
from the factor ζ.

(11)Where the corrected stress violates the failure criterion for the first
time.
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Measured data cropped MP corrected data
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Measured data cropped MP corrected data (shifted)

Figure 6. After the MP-correction, the isochoric stress
path is shifted so that both final states p and pc just sat-
isfy the liquefaction condition (39). The shifted value of
pc

0 enters the corrected value CRR = 1
2qampl/pc

0 .

K(p) after Osinov 

K(p) after Bauer 

20 40 60 80 100 120 140

10

20
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40

50 K[MPa]

p[kPa]

Figure 7. Original stiffness K (p) after Bauer [1992]
should be slightly reduced according to Osinov et al.
[2016]. This reduction improves the MP correction at
the limit p→ 0.

(1) choose several starting points p0 on the originally mea-
sured stress path
(2) perform the MP-corrections starting from these p0

points until the corrected path surpass the failure line.
(2) count the cycles N to failure of each corrected path
(3) interpret these numbers N and the respective ratios
1
2 qampl/p0 as if they were obtained from independent tests.
(4) interpolate between corrected N values in order to ob-
tain CRR = 1

2 qampl/p0 at exactly N = N f = 10
This method assumes that the pre-cycles do not affect the
subsequent pore pressure build up, which is disputable.

Open Geomechanics, 2020, article no. 5
Andrzej Niemunis & Lukas Knittel, Removal of the membrane penetration error from triaxial data 8



Size: 100 mm, qampl = 30 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 100 mm, qampl = 40 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 100 mm, qampl = 50 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 150 mm, qampl = 20 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 150 mm, qampl = 30 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 150 mm, qampl = 40 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

Size: 150 mm, qampl = 40 kPa

0 50 100 150

Mean pressure p [kPa]

-60

-40

-20

0

20

40

60

D
ev

ia
to

ric
 s

tr
es

s 
q 

[k
P

a]

undrained isochoric

100 101 102 103

Number of cycles N [-]

0.00

0.10

0.20

0.30

0.40

C
rit

ic
al

 s
tr

es
s 

ra
tio

 C
S

R
 =

 q
am

pl
/(

2p
0
) 

[-
]

Size: 100 mm, undrained
Size: 150 mm, undrained
Size: 100 mm, isochoric
Size: 150 mm, isochoric

Figure 8. Measured and MP-corrected undrained paths from stress cycles. The red isochoric line should coincide
because pure CRR-results should not depend on the size of the sample.
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7. Conclusions
The MP-error from the triaxial tests can be of importance
even for medium-coarse sand. An MP-correction procedure
has been proposed to operate on the monotonic or cyclic
undrained stress paths obtained from the lab. Beside the
measured stress path, two functions should be provided for
the MP-correction: the bulk modulus of skeleton K (p, q)
and the stiffness of the membrane kMP (p, q). In the case
of poor saturation, the stiffness of the substance should
also be considered via Km(p, q). At the limit p → 0, the
ratio K /kMP may strongly increase causing unrealistic MP-
corrections. In such cases a redefinition of Eq. 39 for the
point of liquefaction can be considered.
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Appendix A. Undrained cyclic tests
The tests were performed in a cyclic triaxial test device using
samples of 10 cm diameter and 10 cm height otherwise sam-
ples of 15 cm diameter and 15 cm height. A scheme of the
devices at IBF, KIT is shown in Fig. 9. The samples were pre-
pared by moist tamping and tested in the water-saturated
condition using a back pressure of u = 500 kPa. The effective
lateral stress σ′

3 was kept constant, while the cyclic loading
was applied in the vertical direction, with an average value

of effective axial stress σ′av
1 and a stress amplitude σ

ampl
1 .

The cyclic loading was realized by means of a spindle gear
system and a rate of 0.005 mm/min. Axial deformations
were measured with a displacement transducer attached to
the load piston, while volume changes were obtained from
a burette system connected to the fully water-saturated
pore space, using a differential pressure transducer. The
specimen is considered completely liquefied according to
the criterion (39). All tests are performend on Karlsruhe
Sand, a clean medium sand with mean grain size d50 = 0.54
mm and a uniformity coefficient Cu = d60/d10 = 1.46.

Appendix B. Formulas for kMP

According to Nicholson et al. [1993], the volumetric strain
εMP is a function of lateral compression from σr 0 to σr . It

movable 
traverse

load piston for σa

plexiglass cylinder

sample

pressure cell
with water filling

load cell for σa 

to pw-system (deair)

to pw-system

cell pressure σr 

Figure 9. Scheme of the cyclic triaxial tests used for
this study at Institute for Soil and Rock mechanics, at
the Karlsruhe Insitute for Technology

can be estimated with the logarithmic compliance SMP [cm],

εMP
vol = Amem

V
SMP ln

σr

σr 0
or ε̇MP

vol =
Amem

V
SMP σ̇r

σr
, (40)

where Amem[cm2] and V [cm3] denote the area of the mem-
brane and the sample volume, respectively. The previously
used constants cMP and kMP should be upgraded accord-
ingly to the functions of σr , i.e.

kMP (p, q) = Vσr

ASMP
with σr = p −q/3 (41)

In order to determine SMP experimentally, samples with
different ratios A/V can be loaded identically isotropically.
The deformation εMP

vol increases proportionally with the ratio

A/V and εMP
vol can be estimated from the asymptotic value at

A/V →∞.

The size of MP depends mainly on the grain size dis-
tribution curve. The number of pores, the grain shape,
the structure of the grain skeleton and (surprisingly) the
membrane strength or stiffness (if ”usual” ratios of grain di-
ameter to membrane strength are observed) are negligible.
The following correlation between SMP and grain diameter
d20 was proposed in Nicholson et al. [1993], see Fig. 10.

SMP ≈ 0.0019+0.0095 d20 −0.0000157 (d20)2 (42)

with units SMP [cm] and d20 [mm].
An alternative formula

εMP
vol = 1

2

dg

D

(
σr dg

E M t M

)1/3

(43)
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Figure 10. Empirical formula ( 42) for SMP as a func-
tion of the grain diameter d20. Eq. ( 42) is not used in
the example presented in Section 5.

was proposed in Baldi and Nova [1984] with the grain diam-
eter dg [mm], diameter of the sample, D[mm], Young modu-
lus of the membrane E M ≈ 1.3 ·103 kPa, and the thickness of
the membrane t M ≈ 0,3 mm. The corresponding rate

ε̇MP
vol =Cσ−2/3

r σ̇r or kMP = 1

C
σ2/3

r (44)

with C = 1

6

dg

D

(
dg

E M t M

)1/3

is in agreement with (2).

Appendix C. Mma scripts

Script 1. Derivation of the stiffness for Section 3
evs = ( p − q/3) /k ; eqs = −evs / 3 ;
e1 = p == K* ( ev + evs ) + Kpq ( eq + eqs ) ;
e2 = q == Kqp ( ev + evs ) + 3 G ( eq + eqs ) ;
solu = Solve [ { e1 , e2 } , {p , q } ] // FullSimplify
pp = p / . solu [ [ 1 ] ] ; qq = q / . solu [ [ 1 ] ] ;

e1 = Ke == Coefficient [pp , ev ] ; e2 = Kepq == Coefficient [pp , eq ] ;
e3 = Keqp == Coefficient [ qq , ev ] ; e4 = Ge == Coefficient [ qq , eq

] / 3 ;
Solve [ { e1 , e2 , e3 , e4 } , {K, G, Kpq, Kqp} ]

Script 2. First derivation for Section 4.2
e2 = 3 p == sa + 2 sr ; e3 = q == sa − sr ;
Solve [ Eliminate [ { e2 , e3 } , { sa } ] , sr ] ; dsr = dp − dq/ 3 ;
Solve [ Eliminate [ { dp , dq} == { { K, Kpq} , { 0 , 3 G} } . { − dsr /kMP, deq } ,

deq+dsr /(3 kMP) ] , dp]

Script 3. Second derivation for Section 4.2
eq = Eliminate [ { (G*K+ kMP Kpq) /(3G(K+kMP) ) ==h ,

K/kMP== b , Kpq/(3*G) == h0 } ,
{K,G,KMP} ] [ [ 1 ] ] ;

Solve [ eq , h0 ]

Script 4. Third derivation for Section 4.2
stateU = { { 1 0 0 , 0 } } ; ASkempton = −0.1; ninc = 2000;
Do[ dq=0.5Cos [ 0 . 0 1 * i ] ;

AppendTo[ stateU , Last [ stateU ]+ {ASkempton*Abs [dq ] , dq } ] ,
{ i , 0 , ninc } ] ;

incrT = Transpose [ Drop[ stateU , 1] − Drop[ stateU , −1] ] ;
hs =incrT [ [ 1 ] ] / incrT [ [ 2 ] ] ;
s t a t e I = { { 1 0 0 , 0 } } ; beta = 0 . 2 ;
Do[dq = 0.5 Cos [ 0 . 0 1 i ] ;

h = hs [ [ i ] ] ; h0 = h + beta (h − 1/3) ;
AppendTo[ s t a t e I , Last [ s t a t e I ] + { h0* dq , dq } ] ;
, { i , 1 , ninc −1 } ] ;

L i s t P l o t [ { stateU , s t a t e I } ]

Mathematica script for the flow chart in
Section

Script 5. Main script for correction of undrained
cyclic tests

( * read the raw data * )
inn = OpenRead[ "data_150_20.dat" ] ;
nl ines = 5000000;
nic = Array [0 &, nlines ] ;
Do[ nic [ [ i ] ] = ReadLine [ inn ] ; iEnd = i ;

I f [ nic [ [ i ]]=== EndOfFile , Print ["final␣record=" , i ] ;
Break [ ] ] ;

, { i , 1 , nlines } ] ;
Close [ inn ] ;
nic = Take [ nic , iEnd − 1 ] ;
Do[ I f [ StringTake [ nic [ [ i ] ] , 1] === "#" , ,iEndComment = i ;

Break [ ] ]
, { i , 1 , 100} ] ;

nicPure = Drop[ nic , iEndComment − 1 ] ;
nicTable = ( S t r i n g S p l i t [ # ] & /@ nicPure ) ;
{ nelem , nitem } = nicTable // Dimensions ;
Print ["WAIT!" ] ;
eStress = Array [0 &, nelem ] ;
ProgressIndicator [Dynamic[ i e /nelem ] ]
Do[ eStress [ [ i e ] ] = Internal ‘ StringToDouble [#]& /@ nicTable [ [ i e ] ]

, { ie , 1 , nelem } ] ;

( * set the parameters for the material s t i f f n e s s * )
p = . ;
thisSand= { e0 −> 0.74274 , hB −> 2860030000 , nB −> 0.21378 ,

pZ −> 25 , Z−> 2} ;
( * for Bauer eq . e=e0 *Exp[−(3*p/hB) ^nB ] with Osinov modif . * )

( * set the parameters for the membrane * )
thisMembrane= { S −> 0.0039 , AmV0 −> 0.27 , dg −> 0 . 2 , dP −> 100 ,

EM −> 1550 , tM −> 0 . 3 , CBaldi −> ( dg/dP) /6 * ( dg/EM /tM) ^(1/3) } ;
( * v al i d for 50−100 kN, AmV0_150=0.27 AmV0_100= 0 . 4 ; * )

( * Bulk modulus as a function of e f f . pressure * )
e = e0 *Exp[−(3*p/hB) ^nB ] ;
dedp = −((3^nB*e*nB* (p/hB) ^nB) /p) ;
depsvde = − 1/(1 + e ) ; depsvdp = depsvde * dedp // Simplify ;
KB = 1/ depsvdp ; ( * bulk modulus Bauer * )
K= KB*(1−Exp[− p/pZ ] ) ^(Z−nB) ; ( * mult ipl ier Osinov * )

( * Perform the correction * )
{ s1 , s3 , q , p , pcorr } = path [ [ 1 ] ] ;
pc = Array [0 &, nelem ] ; pc [ [ 1 ] ] = p ;
ProgressIndicator [Dynamic[ i e /nelem ] ]
Do[ { s1 , s3 , q , p , pcorr } = path [ [ i e ] ] ;

p = Max[p , 0 . 1 ] ;
{ ds1 , ds3 , dq , dp , dpcorr } = path [ [ i e ] ] − path [ [ i e − 1 ] ] ;
kMP= p ^(2/3) / CBaldi / / . thisMembrane ; ( * Baldi * )
kMP=(1/( S*AmV0) ) *Max[ s3 , 0 . 1 ] / . thisMembrane ; ( * Nicholson * )
thisK = K / . thisSand ;
beta = thisK /kMP;

pc [ [ i e ] ] = pc [ [ i e − 1 ] ] + dp + beta * ( dp − dq/3 ) ;
, { ie , 2 , nelem } ] ;

( * Paths meaured vs . corrected + s h i f t e d r i g h t by Dp=78 * )
ps = path [ [ All , 4 ] ] ; qs = path [ [ All , 3 ] ] ;
pcorrs = path [ [ All , 5 ] ] ;
g1 = Li stLi nePlo t [ { Transpose [ { ps , qs } ] , Transpose [{78+pc , qs } ] } ,

PlotRange −> Full ]

A MATLAB version of the above script is available from the
authors.
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Appendix D. Parameters for the MP
correction procedure from Section 5
The presented correction of undrained cyclic tests requires
the parameter SMP of the membrane. After Nicholson et al.
[1993], one could use the correlation of SMP with d20, cf.
Eq. (42). Alternatively, one can evaluate SMP directly from
drained isotropic compression tests on cylindrical samples
of different size (diameter = 2r = height), here 5, 10 and
15cm. All samples were perfectly water-saturated under
a constant back pressure u = 500 kPa. The sand and the
membrane (thickness tM = 0.3 mm, elastic modulus EM

= 1550 kPa) were identical as the ones in the undrained
cyclic test, of course. The densities of all specimens were
similar, Dr 0 = 39% - 42%, see Fig. 11a. All samples were
subjected to identical isotropic, drained compression from
p = 50 to 200 kPa. The volume changes were measured via
the pore water system. The measured volumetric strain
ε∗vol = Vw /V0 was not identical for all samples. Additional

volume V MP
w due the MP was proportional to the surface

Amem of the membrane 2πr · r . The strain εMP
vol = V MP

w /V
with V = πr 2 · r must be therefore proportional to 1/r . This
explains why larger samples had smaller ε∗vol. The parameter

SMP [cm] was determined from the approximation of three
measurements(12) of ε∗vol by the Nicolson’s formula

ε∗vol = εvol +
Amem

V
SMP ln

σr

σr 0
(45)

see Fig. 11a. For samples 5, 10 and 15 cm, the ratios were
Amem/V0 were 0.8, 0.40 and 0.27 cm−1, respectively, but
ln(σr /σr 0) = ln4 was identical. Therefore, true deformation
εvol is also assumed identical. The system of three indepen-
dent equations (45) with two unknowns SMP and εvol is over-
determined and gives the approximation SMP ≈ 0.0039cm,
see Fig. 11a. Substituting this value into (41) for samples of
size 15 cm one obtains roughly kMP ≈ 1000p.

The presented MP-correction requires the bulk stiff-
ness K (p) of soil skeleton in Eq. (37). During an undrained
cyclic test, the effective pressure p decreases and hence
the stiffness upon unloading is more appropriate than
the one upon loading, Fig. 11 b). Using the approxima-
tion e = e0 exp((−3p/hB )nB ) after Bauer [1992], which
corresponds to Eq. 37 the parameters e0 = 0.742274,
hB = 2.860 ·109 kPa and nB = 0.21378 could be determined.
For the modification of K at very low stress, the parameters
after Osinov pz = 50 kPa and ζ = 2 were used. The critical
friction angle of Karlsruhe Sand is ϕ = 33.1◦.

Manuscript received 17th January 2020, revised 25th May 2020 and
23rd September 2020, accepted 22nd September 2020.

(12)They correspond to diameters 2r = 5,10 and 15cm.
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Figure 11. a) Nicholson’s membrane parameter SMP .
Volumetric strains ε∗vol from samples of different size
have been approximated by Eq. (45).
b) Parameters for bulk modulus of skeleton K from
drained triaxial tests with similar relative Density
Dr0 ≈ 40%. The parameters nB and hB were fitted to
the unloading curve, and not to the first loading as re-
quired by Bauer [1992] for the constitutive description.
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