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Abstract. A generic approach to encapsulating meso scale details and
their associated dissipative mechanisms in constitutive models for geo-
materials is presented. The focus is the explicit meso-macro link as the
basis for developments of constitutive models. These links are usually
missing in constitutive modelling of geomaterials, leading to incorrect
description of post-localisation behaviour at the constitutive (material)
level. In other words, the classical definition of material behaviour asso-
ciated with a unit volume element, based on conditions of homogenous
deformation, ceases to exist once localised failure occurs. Such locali-
sation issues can and should also be dealt with at the constitutive level.
The proposed generic thermodynamics-based formulation to integrate
meso scale behaviour of localisation band in constitutive models pro-
vides a way to connect meso and macro scales so that post-localisation
behaviour can be correctly described at the constitutive level. Exam-
ples on onset of localisation and post-localisation behaviour are used
to demonstrate key features and benefits of the proposed approach.
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1. Introduction
Classical constitutive models are formulated on the as-
sumptions of homogeneous deformation and can be used
for an arbitrary volume element in the analysis of Boundary
Value Problems (BVPs) as long as this volume element is
homogeneous in both stress and deformation. However, it
has been well known that failure observed experimentally
or in the field usually (if not always) involves localisation
of deformation. In such cases, the distribution of strains
in a volume element is no longer sufficiently uniform to
be considered homogeneous, destroying the assumption
of homogeneity that formulations of classical constitutive
models are based on. In this sense, the problem (specimen
failure in experiments) becomes a BVP once localisation
of deformation takes place, due to the appearance of a lo-
calisation band and its behaviour at a scale (meso scale)
lower than the size of the specimen (Labuz and Biolzi 1991).
Therefore, post-localisation behaviour cannot be correctly
described by a classical constitutive model, due to lack of
details, including behaviour and geometrical properties, at
the meso scale of the localisation band in such a model. It is
noted that the topic of strain localisation and bifurcation in
continuum modelling that has been extensively investigated
in the literature [Mühlhaus and Vardoulakis, 1987, Neilsen
and Schreyer, 1993, Rice and Rudnicki, 1980, Rudnicki and
Rice, 1975, Vardoulakis, 1989, Vardoulakis et al., 1978, Var-
doulakis and Sulem, 1995] , and it is not the intention of this
paper to cover a comprehensive literature review on this
topic. Instead the focus is on post-localisation behaviour,
where classical continuum models cease to be valid, and
how to enhance constitutive models to better deal with
post-localisation behaviour.

In the context of analysis of BVPs, any attempt to use
classical continuum models in problems involving localised
failure requires additional enhancements, called regulari-
sation, to overcome localisation-related issues to assure the
meaningful convergence of the numerical solutions with
respect to discretisation refinement. Examples of regular-
isations include the simple scaling of behaviour based on
fracture energy used in smeared crack/deformation ap-
proach (Cedolin and Bažant 1980, Crook et al. 2006, Zabala
and Alonso 2011, Soga et al. 2016), higher order theories
that take into account interactions among volume elements
described by a constitutive model through an additional
integral (nonlocal theories) [Bažant, 1991, Jirásek, 1998,
Pijaudier-Cabot and Bažant, 1987] or differential equation
(gradient theories) [Chen and Schreyer, 1987, De Borst
and Mühlhaus, 1992], or rate-dependent regularisation
[Das et al., 2014, Mir et al., 2018]. Other element-based
approaches, e.g. Enhanced Assumed Strain (EAS) or Strong
Discontinuity Approach (SDA) [Borja, 2000, Jirásek, 2000,
Larsson et al., 1996, Oliver, 1996, Oliver et al., 2006], eX-
tended Finite Element Method – XFEM [Samaniego and
Belytschko, 2005, Sanborn and Prévost, 2011, Wells and
Sluys, 2001], can also be used to handle localised failure in
the analysis of BVPs but need the involvement of a numer-
ical method. Therefore, they are considered out of scope,

given our focus on constitutive modelling, and hence not
discussed in this paper.

In this study, we aim to develop an approach to deal with
localised failure at the constitutive level without requiring
the involvement of a numerical method for the solutions of
BVPs. This approach is not as sophisticated although not as
accurate and comprehensive as higher order methods that
always require the involvement of the analysis of BVPs in
analysis of localised failure. However, it can provide a direct,
one-to-one mapping between the observed features of lo-
calised failure and the constitutive models and their param-
eters, all of which are not always straightforward with other
types of regularisations. In addition, its implementation in
a mesh-based or mesh-free numerical method for the solu-
tions of BVPs will be straightforward, given it is independent
of any characteristics of a numerical method. The role of
meso scale failure mechanism in correctly describing post-
localisation behaviour is particularly focused on, given this
is the missing bit in constitutive modelling of geomaterials
that usually prevent a smooth transition from constitutive
modelling to analysis of BVPs.

The importance and benefits of integrating meso scale
behaviour in constitutive models for geomaterials have
been recognised in the literature, although in our opin-
ion not widely popular in the community of constitutive
modellers. The majority of constitutive models having been
developed and used in geomechanics and geotechnical en-
gineering are not able to describe correctly post-localisation
behaviour, making the calibration and validation with ex-
periments involving localised failure not physically mean-
ingful. In this sense, it is essential to make sure the descrip-
tions of constitutive behaviour are physically meaningful
and correct first, before any attempts to improve the per-
formance of the models to reproduce experimental results.
This has been our focus over the last 10 years on bridging
behaviour across a few scales in constitutive modelling and
applications in geomechanics [Bui and Nguyen, 2021, Le
et al., 2022, 2018, 2019, 2017, Nguyen et al., 2017, Nguyen
and Bui, 2020, Nguyen et al., 2012, 2014, 2016a,b, Tran et al.,
2019, Wang et al., 2019, 2020]. It has been shown in these
papers that adding meso scale behaviour of a localisation
band in constitutive modelling of geomatetrials is not only
an essential way to describe correctly post-localisation be-
haviour but also a good approach to incorporate behaviour
at a scale lower than meso scale [Le et al., 2019]. Much
earlier pioneering work on this issue in constitutive mod-
elling by Pietruszczak and co-authors [Pietruszczak, 1999,
Pietruszczak and Haghighat, 2015, Pietruszczak and Mróz,
1981, Pietruszczak and Mroz, 2001, Pietruszczak and Xu,
1995, Xu and Pietruszczak, 1997] are also well recognised
and appreciated, although not formulated based on either
meso-macro work balance or thermodynamics that can be
applicable to a range of constitutive models.

This paper is built on our earlier work mentioned above.
A new generic thermodynamic formulation is described for
both developments of new and enhancement of existing
constitutive models. The demonstrations provided in this
paper include (i) stress return algorithm to bridge meso
and macro scales, (ii) detection of onset and orientation
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Figure 1. Set-up for uniaxial compression of Hawks-
bury sandstone specimen.

of localisation band for transition from diffuse to localised
failure, (iii) enhancement of an existing model for rocks un-
der different confining pressures using both the proposed
two-scale approaches and a rate-dependent regularisation,
and (iv) assessment of a two-scale model against both ex-
perimental data and numerical results obtained from Finite
Element Analysis (FEA) using rate-dependent regularis-
artion. It is noted that a comprehensive assessment and
validation of the proposed approach and models presented
is not the intention of this study. Instead, we would like to
use the models and obtained results as a means to convey
the key message in constitutive modelling of geomaterials:
meso-scale behaviour due to localisation should be incor-
porated in the structure of constitutive models before any
attempts to calibrate a model to reproduce experimental
results.

Results on failure of sandstone specimens under uniaxial
compression are presented in this section to provide a back-
ground on localised failure for the theoretical development
in the next section. It is noted that this presentation is not a
comprehensive one and serves the sole purpose of explain-
ing why meso scale behaviour of localisation band is needed
in constitutive modelling of engineering materials.

Cylindrical specimens of 42 mm diameter of Hawkesbury
sandstone, with an aspect ratio (height/diameter) of 3.5, are
subject to uniaxial compression. Indirect displacement
control based on lateral deformation is used to capture
snap-back behaviour due to size effect induced by locali-
sation. The rate of lateral deformation obtained from the
chain extensometer attached to the specimen (Figure 1) was
maintained constant and used as feedback to the loading
frame. Three-dimensional Digital Image Correlation (DIC)
technique was used to obtain full field strains and their
evolutions during deformation of the specimens. Details
on the experiment and analysis can be found in our recent
papers [Pour et al., 2022, Verma et al., 2021].

The evolution of Von Mises strain on the surface of the
specimen is synchronised with its mechanical behaviour
and plotted in Figure 2. Despite the snap-back observed in
the mechanical response, the evolution of strain localisation
is not abrupt, showing a gradual transition from diffuse to
localised failure (Fig. 2ii) with a finite thickness localisation
band [Pour et al., 2022]. It is noted that due to the chain
extensometer in the middle of the specimen (Fig. 1) used to
control and capture snap-back response, DIC data are not
available in the middle of the specimen, and linear interpo-
lation is used in plotting the strain profiles in Fig. 2ii. The
material inhomogeneity can be seen in the fluctuation of
strain profiles before peak (Fig. 2ii), while in the post-peak
regime (from point “c” in Fig. 2i) the maximum strain in the
localisation band gradually reaches a very high level at least
one order of magnitude above the magnitude of strain in
the outside region. This difference is well beyond the am-
plitude of strain fluctuation due to material inhomogeneity
observed on pre-peak regime. Therefore, assumptions on
homogeneity used in continuum mechanics for interpreting
experimental data are not valid anymore.

The observed process of strain localisation gradually sep-
arates the specimen into two distinct regions each of which
follows its own loading path. Unloading with magnitude of
strain decreasing can be seen in the region outside the lo-
calisation band, while the inelastic loading inside the locali-
sation band gradually results in the separation of the speci-
men. However, from statics equilibrium, the stresses in these
two regions (localisation band and the bulk material outside
the band) must be in equilibrium realised in the continuity
of stress components normal and tangential to the localisa-
tion band. The above observations on strain localisation and
internal equilibrium provide a basis for the development of
constitutive models that can correctly take into account lo-
calisation of deformation underpinning the observed me-
chanical response of a specimen. This is the focus of this pa-
per.

1.1. Localised failure and kinematic
enrichment

As can be seen in Fig. 2, despite very brittle behaviour ob-
served, the thickness of the localisation band can be consid-
ered significant compared to the size of the specimen, mak-
ing the assumption of a finite thickness band reasonable.
Due to different responses inside and outside the localisa-
tion band, the macro strain εi j representing the averaged
deformation of a volume element consisting of a localisation
band can be considered as a volume averaged quantity:

εi j = (1− f )εo
i j + f εi

i j (1)

The localisation zone can be assumed to take the form
of a planar band as usually observed at both lab [Alshibli
and Hasan, 2008, Andò et al., 2013, Baud et al., 2004, Char-
alampidou et al., 2014, Thakur et al., 2017] and field scales
[Chemenda, 2011, Mollema and Antonellini, 1996, Sternlof
et al., 2005]. Therefore the volume fraction f of this localisa-
tion band can be expressed as the ratio between the thick-
ness h of this band and the effective size H = V

S of the vol-
ume element containing it (Fig. 3), where S is the surface
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Figure 2. Mechanical responses and evolution of Von Mises strain – (i): load-displacement response with snap-back
and evolution of Von Mises strain contour on specimen surface; (ii): evolution of Von Mises strain profile along a
vertical line in the middle of the specimen.

area of the localisation zone:

f = Sh

V
= Sh

SH
= h

H
(2)

Due to localisation and high gradient of strain rate across
the boundary of the localisation zone (Fig. 2) the strain rate
ε̇i

i j inside the localisation band can be assumed of follow-

ing form Borja [2000], Neilsen and Schreyer [1993], Oliver
[1996]:

ε̇i
i j = ε̇o

i j +
1

h

(
u̇i n j

)s (3)

where ε̇o
i j is the homogeneous strain rate outside the local-

isation band. The superscript “s” in equation (3) indicates
symmetrisation. The relative velocity u̇i between two faces
of the localisation band, and normal vector n j describing
the orientation of the localisation band are taken into ac-
count in the above equation. From equations (1) and (2), we
can express ε̇o

i j , and ε̇i
i j as:

ε̇o
i j = ε̇i j − f

h

(
u̇i n j

)s (4)

ε̇i
i j = ε̇i j + 1− f

h

(
u̇i n j

)s (5)

The above equations (4-5) have been used in [Mir, 2017,
Nguyen and Bui, 2020, Nguyen et al., 2016b] for developing

V"
V#

V#: Volume of the material outside the band

V": Volume of the material inside the band

𝑆: Surface area of the band

Figure 3. A volume element (with volume V ) crossed
by a finite thickness localisation band.

constitutive models possessing behaviour at meso scale of
the localisation band.

The relationship between macro stress σi j and macro
strain εi j in this case is not governed by a constitutive law
like in classical continuum models, but controlled by the
responses inside and outside the localisation band, each
of which follows its own constitutive relationship, besides
their corresponding sizes. They represent the behaviour
below the macro scale of the volume element considered.
In this case it is physically reasonable to assume homoge-
neous behaviour inside the localisation band, governed by
two constitutive relationships represented by

(
σi

i j ,εi
i j

)
and(

σo
i j ,εo

i j

)
, respectively. It is noted that this assumption is

associated with fixed thickness of a localisation band and is
a simplification of physical phenomena in which the band
thickness has been observed to evolve with its behaviour
[Andò, 2013, Andò et al., 2013, Pour et al., 2022, Rattez et al.,
2022].

1.2. A Thermodynamics-based formulation
This Section describes enhancements to the thermo-

dynamic framework by [Houlsby and Puzrin, 2000, 2006]
originally developed for classical constitutive models based
on the assumption of homogeneous deformation. These
enhancements are to take into account localisation and
behaviour at meso scale so that post-localisation responses
can be described correctly by a model enhanced using this
proposed two-scale approach. It is noted that a different
and more generic thermodynamic approach for constitu-
tive models possessing an embedded localisation band with
evolving thickness has been developed in our recent work
[Nguyen and Bui, 2020] and can also be used here. However,
the use of constraints on kinematic enrichments adopted
in this study is a simpler way, suggested by Professor Guy
Houlsby of Oxford University during his visit to Adelaide in
May 2015, to incorporate useful features to a constitutive
model using procedures established beforehand. This use
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of constraint to develop thermodynamically consistent two-
scale approach has been developed in [Mir, 2017] to derive
thermodynamics-based models that can correctly describe
both pre- and post-localisation behaviour. A slightly differ-
ent way is illustrated in this Section, in which the kinematic
enrichments in equations (1) and (3) are used as constraints
in the energy and dissipation potentials in the current
approach. They are rewritten as:

C 1
i j = εi j − (1− f )εo

i j − f εi
i j = 0 (6)

and

C 2
i j = ε̇i

i j −
[
ε̇o

i j +
1

h

(
u̇i n j

)s
]
= 0 (7)

where C 1
i j and C 2

i j are two constraints to be used in the en-

ergy and dissipation potentials, respectively. The Helmholtz
free energy potentialΨ of a volume element containing a lo-
calisation band takes the following volume averaged form:

Ψ= (1− f )Ψo
(
εo

i j ,αo
i j

)
+ fΨi

(
εi

i j ,αi
i j

)
+Λ1

i j C 1
i j (8)

where Λ1
i j is the Lagrangian multiplier associated with con-

straint C 1
i j ; Ψo

(
εo

i j ,αo
i j

)
and Ψi

(
εi

i j ,αi
i j

)
are the Helmholtz

free energies for unit volumes of the regions outside and in-
side the localisation band, respectively.

The augmented dissipation potential Φ̃ of the volume el-
ement containing the localisation band is:

Φ̃= (1− f )Φ̃o + f Φ̃i +Λ2
i j C 2

i j (9)

where Λ2
i j is the Lagrangian multiplier associated with con-

straint C 2
i j . In the above expression, Φ̃o and Φ̃i are dissipa-

tion potentials written for unit volumes outside and inside
the localisation bands, respectively. For rate-independent
behaviour considered in this study, they are homogeneous
first order functions of the corresponding rate of internal
variables, α̇i

i j and α̇o
i j . For generality, αo

i j and αi
i j are used

as internal variables representing the effects of microstruc-
tural evolution at scales lower than the meso scale of the
localisation band. It is noted here that αo

i j and αi
i j imply

a wide range of internal variables representing the effects
of micro-structural changes on macro responses. Examples
include plastic strain in plasticity theory, damage vari-
ables in damage mechanics [Lubarda and Krajcinovic, 1993,
Pijaudier-Cabot and Bažant, 1987], or Breakage variable
in Breakage Mechanics [Einav, 2007a,b]. It is noted that Ψ
and Φ̃ are the energy and dissipation potentials of a unit
volume element containing a localisation band, and hence
the strains εi

i j , εo
i j and displacement jump ui are considered

as internal variables with respect to the macro behaviour of
this unit volume element. The sub-scale energy (Ψo andΨi )
and dissipation potentials (Φ̃o and Φ̃i ) can follow descrip-
tions presented in [Houlsby and Puzrin, 2000, 2006], with
specific examples in several publications on continuum
models formulated based on this framework.

Following standard procedures in [Houlsby and Puzrin,
2000, 2006], the macro stressσi j and generalised stresses are
obtained from the energy potential (8) as:

σi j = ∂Ψ

∂εi j
=Λ1

i j (10)

χo
i j =− ∂Ψ

∂αo
i j

=−(1− f )
∂Ψo

∂αo
i j

(11)

χi
i j =− ∂Ψ

∂αi
i j

=− f
∂Ψi

∂αi
i j

(12)

χε
i

i j =− ∂Ψ

∂εi
i j

=− f
∂Ψi

∂εi
i j

+ f Λ1
i j (13)

χε
o

i j =− ∂Ψ

∂εo
i j

=−(1− f )
∂Ψo

∂εo
i j

+ (1− f )Λ1
i j (14)

χu
i =− ∂Ψ

∂ui
= 0 (15)

In the above expressions, χo
i j , χi

i j , χε
i

i j , χε
o

i j , and χu
i are the

generalised stresses associated withαo
i j ,αi

i j , εi
i j , εo

i j , and ui ,

respectively. From the augmented dissipation potential (9),
we obtain the following dissipative generalised stresses χo

i j ,

χi
i j , χε

i

i j , χε
o

i j , and χu
i :

χo
i j =

∂Φ̃

∂α̇o
i j

= (1− f )
∂Φ̃o

∂α̇o
i j

(16)

χi
i j =

∂Φ̃

∂α̇i
i j

= f
∂Φ̃i

∂α̇i
i j

(17)

χε
i

i j =
∂Φ̃

∂ε̇i
i j

=Λ2
i j (18)

χε
o

i j =
∂Φ̃

∂ε̇o
i j

=−Λ2
i j (19)

χu
i = ∂Φ̃

∂u̇i
= f

h
Λ2

i j n j (20)

We consider at first two Ziegler’s orthogonality conditions
[Houlsby and Puzrin, 2000, Ziegler, 1983] χo

i j =χo
i j and χi

i j =
χi

i j . Using equations (11, 12) and (16, 17) these two orthogo-

nality conditions lead to the following expressions:

− ∂Ψo

∂αo
i j

= ∂Φ̃o

∂α̇o
i j

(21)

− ∂Ψi

∂αi
i j

= ∂Φ̃i

∂α̇i
i j

(22)

The above are in fact Ziegler’s orthogonality conditions
for the formulations of two sub-scale models for formulat-
ing constitutive responses outside (described byΨo and Φ̃o)
and inside the localisation band (described byΨi and Φ̃i ).

It can be seen from equations (18) and (19) that χε
i

i j =
−χεo

i j =Λ2
i j . Using this together with (10) for Ziegler’s orthog-

onality conditions χε
i

i j =χε
i

i j and χε
o

i j =χε
o

i j , we obtain:

− f
∂Ψi

∂εi
i j

+ f σi j = (1− f )
∂Ψo

∂εo
i j

− (1− f )σi j (23)

Given Ψi and Ψo as Helmholtz free energy potentials for
regions inside and outside the localisation band, the corre-
sponding stresses σi

i j and σo
i j can be expressed as:

σi
i j =

∂Ψi

∂εi
i j

(24)

Open Geomechanics, 2022, article no. 3
Giang Dinh Nguyen, Arash Mir & Ha Hong Bui, Enriching constitutive models with meso-scale behaviour: a thermodynamics-based
formulation and examples 5



σo
i j =

∂Ψo

∂εo
i j

(25)

Equation (23) becomes:

σi j = (1− f )σo
i j + f σi

i j (26)

which is the volume averaged stress that has also been
obtained using the balance of mechanical work produced by
macro and meso quantities [Nguyen et al., 2016b].

From equations (15) and (20), Ziegler’s orthogonality con-
dition in the form of χu

i =χu
i leads to

Λ2
i j n j = 0 (27)

Using the above condition for Ziegler’s orthogonality con-

ditions χε
i

i j =χε
i

i j and χε
o

i j =χε
o

i j , we obtain:

χε
i

i j n j =− f
∂Ψi

∂εi
i j

n j + f σi j n j =χε
i

i j n j =Λ2
i j n j = 0 (28)

χε
o

i j n j =−(1− f )
∂Ψo

∂εo
i j

n j + (1− f )σi j n j

=χεo

i j n j =Λ2
i j n j = 0 (29)

The above two equations lead to the following traction
continuity condition that has also been obtained in [Nguyen
et al., 2016b] using a different approach based on the bal-
ance of work.

σo
i j n j =σi

i j n j =σi j n j (30)

Table 1 summarises the results obtained from the generic
formulation.

As can be seen, conditions to obtain constitutive models
for homogeneous behaviour inside and outside the local-
isation band, based on explicitly defined energy (Ψi , and
Ψo) and dissipation potentials (Φ̃i , and Φ̃o), are recovered
in this generic formulation. In particular, for given energy
potentials Ψx and Φ̃x (“x” stands for “i” or “o”) and inter-

nal variable αx
i j , the orthogonality conditions − ∂Ψx

∂αx
i j

= ∂Φ̃x

∂α̇x
i j

needed for the formulation of a constitutive model based on
the framework by Houlsby and Puzrin [Houlsby and Puzrin,
2000] can be recovered from the above approach. Therefore,
formulations of constitutive models for responses inside
and outside the localisation band can follow standard pro-
cedures established in Houlsby and Puzrin [Houlsby and
Puzrin, 2000]. In other words, these models for sub-scale
behaviour can be formulated independently, and then com-
bined using the volume-averaged macro stress and traction
continuity condition to form the behaviour of a volume ele-
ment crossed by a localisation band. In this case, the macro
response of the volume element containing the band is gov-
erned by the behaviour of the localisation band, including
its thickness and orientation, together with the behaviour
and size of the zone outside this band. The computational
algorithms for both macro tangent stiffness and stress
return will be described in next sub-sections to give the
readers a clearer idea about how to connect the responses
inside and outside the localisation zone. The readers can
also refer to our previous papers [Le et al., 2018, 2019, 2017,
Tran et al., 2019, Wang et al., 2019, 2020] for details and ex-
amples on other two-scale models with a localisation band

idealised as a zero-thickness surface that can be described
by a cohesive-frictional model.

1.3. Computational aspects
Algorithms to connect responses at different scales are

essential for the assessment of the model performance
and numerical analysis. They are presented here for the
sake of completeness given they are not the key focus and
have been presented in our earlier works [Bui and Nguyen,
2021, Mir, 2017, Nguyen et al., 2017, Nguyen and Bui, 2020,
Nguyen et al., 2016b]. The responses inside and outside the
band together with their associated sizes in this case consti-
tute the behaviour of the model. The macro behaviour can
only be obtained using its lower scale responses and their
interactions through the internal equilibrium condition.
This is different from classical models given meso-macro
connections are needed for the stress return algorithm and
formulation of tangent stiffness, besides the regular stress
return routines for responses inside and outside the locali-
sation band. Such connections are paid attention to in this
study, leaving regular stress return algorithms for a classical
continuum model outside the scope of this paper. For this
reason, the incremental behaviour of a unit volume element
outside and inside the localisation zone can assume the
following generic forms:

σ̇o
i j = Do

i j kl ε̇
o
i j (31)

σ̇i
i j = D i

i j kl ε̇
i
i j (32)

where Do
i j kl

(
σo

i j ,αo
i j

)
and D i

i j kl

(
σi

i j ,αi
i j

)
are the tan-

gent stiffness tensors depending on the corresponding
stress state and internal variables. It is noted that for rate-
independent behaviour in this paper, the pseudo rate form
is used for convenience. The above constitutive equations
are generic incremental relationships and any stress return
algorithms can be used to obtain incremental stress tensor
from a given incremental strain tensor. The meso-macro
stress return algorithms and formulation of tangent stiff-
ness are based on the following relationships linking macro
with meso quantities:

σi j = (1− f )σo
i j + f σi

i j (33)

σo
i j n j =σi

i j n j =σi j n j (34)

ε̇o
i j = ε̇i j − f

h

(
u̇i n j

)s (35)

ε̇i
i j = ε̇i j + 1− f

h

(
u̇i n j

)s (36)

These equations are rewritten and summarised here for
clarity and ease of following, given they can be used directly
for computational algorithms for any existing constitutive
models. The whole process of deriving the tangent stiffness
and developing stress return algorithm is based on generic
constitutive relationships and hence the results in the fol-
lowing sub-sections are applicable to any existing models
and loading conditions.
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Table 1. Summary of results from the generic formulation.

Macro Inside the band Outside the band

Macro stress:
σi j = (1− f )σo

i j + f σi
i j

Internal equilibrium:
σo

i j n j =σi
i j n j =σi j n j

Energy potentialsΨi and Φ̃i

Internal variable αi
i j

σi
i j = ∂Ψi

∂εi
i j

− ∂Ψi

∂αi
i j
= ∂Φ̃i

∂α̇i
i j

Energy potentialsΨo and Φ̃o

Internal variable αo
i j

σo
i j = ∂Ψo

∂εo
i j

− ∂Ψo

∂αo
i j
= ∂Φ̃o

∂α̇o
i j

1.3.1. Tangent stiffness
Substituting the incremental stress-strain relationships

(31-32) in the internal equilibrium (34) written in incremen-
tal form, we obtain:(

Do
i j kl ε̇

o
kl −D i

i j kl ε̇
i
kl

)
n j = 0 (37)

The above equation implies that the orientation of the
band does not evolve with deformation. Using the meso-
macro links between strains (35-36), we can expand (37) to
obtain:

Do
i j kl

[
ε̇kl −

f

h
(u̇k nl )s

]
n j

−D i
i j kl

[
ε̇kl +

1− f

h
(u̇k nl )s

]
n j = 0 (38)

The above can be rearranged to:(
Do

i j kl −D i
i j kl

)
ε̇kl n j

−
[

f

h
Do

i j kl nl n j + 1− f

h
D i

i j kl nl n j

]
u̇k = 0 (39)

Therefore, given the macro strain rate ε̇i j , the velocity
jump u̇k can be obtained in the form:

u̇k =Ci k
−1

(
Do

i j mn −D i
i j mn

)
ε̇mnn j (40)

where

Ci k = f

h
Do

i j kl nl n j + 1− f

h
D i

i j kl nl n j (41)

plays the role of the localisation or acoustic tensor [Rice and
Rudnicki, 1980, Rudnicki and Rice, 1975] that contains both
meso scale behaviour and geometrical properties.

Using (35-36) and (40), we can obtain the strain rates out-
side and inside the localisation band:

ε̇o
kl = ε̇kl −

f

h
(u̇k nl )s

= ε̇kl −
f

h

[
Ci k

−1
(
Do

i j mn −D i
i j mn

)
ε̇mnn j nl

]s
(42)

ε̇i
kl = ε̇kl +

1− f

h
(u̇k nl )s

= ε̇kl +
1− f

h

[
Ci k

−1
(
Do

i j mn −D i
i j mn

)
ε̇mnn j nl

]s
(43)

Therefore, the macro incremental stress-strain relation-
ship can be obtained using (31-33):

σ̇pq = (1− f )Do
pqkl ε̇

o
kl + f D i

pqkl ε̇
i
kl (44)

Substituting (42-43) in the above, and rearranging the ob-
tained expression, we can get the tangent stiffness in the fol-
lowing form:

σ̇pq =
[

(1− f )Do
pqmn + f D i

pqmn

− f (1− f )

h
Ci k

−1(Do
i j mn −D i

i j mn

)
×n j nl

(
Do

pqkl −D i
pqkl

)]
ε̇mn (45)

In the above expression, the first and second terms on
the right-hand side represent the upper bound solution
of the macro stress increment. The third term accounts
for the involvement of the localisation band with orienta-
tion −→n and thickness h. For homogeneous deformation,
e.g. Do

i j mn = D i
i j mn and σi

i j = σo
i j , the above expression

automatically collapses to the classical description of a
continuum model with tangent stiffness D i

i j mn . In the case

of localised failure, the tangent stiffness of the volume ele-
ment crossed by a localisation band contains mechanical
responses of the localisation bands and the region sur-
rounding it, and geometrical properties of both the band
(thickness h and orientation −→n ) and the volume element (its
size H , via volume fraction f = h

H ). This is the key difference
with classical continuum models.

As can be seen, the macro incremental response can be
obtained given generic incremental responses inside and
outside the localisation band (see equations 31-32), the
thickness of the band and the effective size of the volume
element containing it. In this sense, any existing constitu-
tive models can be enhanced using the proposed two-scale
approach to better describe post-localisation behaviour,
and only an additional parameter (thickness of the band)
is needed. The orientation of the localisation band can be
obtained from bifurcation analysis based on the localisation
(or acoustic) tensor (see Section 4).

1.3.2. An implicit stress return algorithm
The tangent stiffness (45) can be used for an explicit stress

return algorithm. However, given the explicit nature of the
process that relies on stress state and internal variables at
the previous increment, the internal equilibrium condition
(34) will not be met and error will keep accumulating. More
importantly, the explicit algorithm is only conditionally sta-
ble and hence requires very small strain increments to keep
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the error acceptable. Therefore, it is essential to have an im-
plicit iterative algorithm that can accept finite strain incre-
ments while always meeting the internal equilibrium con-
dition connecting the stresses inside and outside the locali-
sation zone. Denoting ri the residual traction vector due to
in-equilibrium, we can write:(

σo
i j −σi

i j

)
n j = ri (46)

This iterative process starts after an explicit one taking
the residual from last step into account. This is considered as
zeroth iteration that results in in-equilibrium between trac-
tions inside and outside the localisation band.

Using a first order Taylor expansion of the above equation
about a given state, we obtain:

ri
new = ri

ol d +
(
σ̇o

i j − σ̇i
i j

)
n j (47)

where ri
ol d is the residual traction at this given state. Sub-

stituting the generic incremental stress-strain relationships
(31-32), and meso-macro strain connections (35-36) in the
above expression, we obtain:

ri
new = ri

ol d −Do
i j kl

f

h
(u̇k nl )s n j −D i

i j kl

1− f

h
(u̇k nl )s n j

(48)
It is noted that this iterative process starts after an explicit

one where the macro strain rate ε̇i j has been applied. As
a consequence, ε̇i j does not appear in the above equation.
Enforcing the condition ri

new = 0 and solving the obtained
equation for the velocity jump u̇k , we obtain:

u̇k =Ci k
−1ri

ol d (49)

where Ci k has been defined in (40). The iterative strain rates
ε̇i

i j and ε̇o
i j are then:

ε̇o
i j =− f

h

(
u̇i n j

)s (50)

ε̇i
i j =

1− f

h

(
u̇i n j

)s (51)

The iterative strain rates ε̇i
i j and ε̇o

i j are used for obtaining

iterative stress rates σ̇o
i j , and σ̇i

i j and then their total coun-

terparts σo
i j , and σi

i j . The iterative process continues until

convergence, indicated by a small enough residual ri com-
pared to the stresses σo

i j , or σi
i j . It is worth noticing that the

zeroth step can also take any residual from previous steps
into account, and due to the enforcement of traction con-
tinuity in total form, issues with the accumulation of error
do not exist in this implicit algorithm. Given all quantities
are continuous functions, the convergence of this Newton-
Raphson iterative algorithm depends on how good the first
guess is, which in turn is governed by the magnitude of the
macro strain increment supplied to the stress return rou-
tine. In this sense, sub-incrementation combined with algo-
rithms to return to the last converged state can be used to
improve the performance of the stress return routine. De-
tails on the performance of this algorithm can be found in
[Nguyen et al., 2016b].

2. A continuum model for inelastic
behaviour inside the localisation
zone

The damage-plasticity model presented in [Mir, 2017, Mir
et al., 2018] is adopted here for both inelastic behaviour in-
side the localisation band and elastic behaviour outside it.
The model has been formulated based on thermodynamics
and assessed against experimental data on sandstone failure
under triaxial conditions. However, the assessment can only
be considered as qualitative given it did not take into ac-
count post-localisation behaviour that makes the behaviour
of a specimen a BVP (or structural problem). The model will
be used in the framework presented above to capture post-
localisation behaviour at the constitutive level. In the pro-
posed two-scale approach, this model can be used to pro-
vide elastic tangent stiffness Do

i j kl for the behaviour outside

the localisation band and inelastic tangent stiffness D i
i j kl

for the behaviour inside the localisation band. The formula-
tion of elastic-plastic-damage tangent stiffness D i

i j kl can be

found in our earlier publications [Mir, 2017, Mir et al., 2018]
and hence is not repeated here. For simplicity in the model
descriptions, the superscripts “i” and “o” are dropped and
the model is presented as a regular continuum model writ-
ten for a unit volume element.

2.1. Model descriptions
The model is described using stress invariants in triax-

ial stress space, with hydrostatic pressure p = −σi i /3, shear

stress q = p
3J2, where J2 =

√
3
2 si j si j is the second invari-

ant of the deviatoric stress tensor si j = σi j − 1
3σkkδi j . The

stress-strain-damage relationships are:

p = (1−D)K εe
v = (1−D)K

(
εv −εp

v
)

(52)

q = 3(1−D)Gεe
s = 3(1−D)G

(
εs −εp

s
)

(53)

where εv and εs are volumetric and deviatoric shear strain,
with plastic counterparts εp

v and ε
p
s , respectively. The bulk

and shear moduli are denoted as K , and G , respectively.
The yield function is a function of stress and damage:

y =
 p −ρ

(1−γ)pc−pt

(1−D)(pc+pt ) p + γ
2 pc

2

+
(

q −µ(D)p

M
(
p −αp(1−D)(p −ρ)

))2

−16 0 (54)

In the above expression M is the slope of the critical state
line, attained when D = 1; pt and pc are isotropic pressures
at yield under isotropic tension and compression, respec-
tively; µ(D) = D(1−D)µ0 is a function of damage, and ρ is
the back stress depending on pt and pc :

ρ = (4−γ)pc pt +γpc
2

2
(
pc +pt

) (55)

Other parameters of the model are α and γ, which con-
trol the shape of the yield surface, and µ0 that controls the
kinematic hardening/softening behaviour [Mir et al., 2018].
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The evolution rules for plastic strains and damage are ob-
tained from the yield function y∗ written in dissipative stress
space, the details of which can be found in [Mir, 2017, Mir
et al., 2018]. In true stress space, they are written in pseudo
rate forms as:

Ḋ = 2λ̇
rD

2χD

FD
2 (56)

ε̇
p
v = 2λ̇

(
rv

2(p −ρ)

Fv
2 − rs

2µ(D)
(
q −µ(D)p

)
Fs

2

)
(57)

ε̇
p
s = 2λ̇

rs
2
(
q −µ(D)p

)
Fs

2 (58)

where

Fv = 1

rv

(
(1−γ)pc −pt

(1−D)
(
pc +pt

) p + γ

2
pc

)
(59)

Fs = M

rs

(
p −β

√
(1−D)(p −ρ)

)
(60)

FD = χD√(
rD

2 + rs
2
)( χv

rv F v

)2 + (
rD

2 + rv
2
)(χs−µ(D)χv

rs Fs

)2
(61)

χD = p2

2K (1−D)2 + q2

6G(1−D)2 −ρ ∂µ
∂D

ε
p
s (62)

Parameters rv , rs and rD in the above equations affect
the damage-plasticity coupling behaviour of the model and
meets the condition rv

2 + rs
2 + rD

2 = 1.

2.2. Model behaviour
The model behaviour assessed against two different

sandstones with data from [Baud et al., 2004, 2006] is briefly
presented in Figs. 4-5, reproduced from our earlier work
[Mir, 2017, Mir et al., 2018]. It is noted that all model pa-
rameters are calibrated on assumptions that the behaviour
is homogeneous, which are incorrect for localised failure
observed in tests on these sandstones. The assessment is
therefore of qualitative nature only, showing the capability
of the model in capturing both brittle and ductile responses
of sandstones.

The model parameters used are shown in Table 2, while
initial yield surfaces and mechanical behaviour are in
Figs. 4 & 5. As can be seen, the model can capture fairly
well responses of these sandstones under both low and
high confining pressures. However, it is pointless to have
a perfect match at this stage without correct underlying
failure/deformation mechanism, given the behaviour in
these tests is associated with localised failure. This issue will
be addressed later using the two-scale approach as an en-
hancement to this model to describe and capture correctly
post-localisation behaviour.

2.3. Rate-dependent regularisation for Finite
Element Analysis (FEA)

As addressed, the constitutive behaviour presented above
is indicative only, given it is based on an incorrect assump-
tion of homogeneous behaviour. A more rigorous way to
perform validation of such models is to use FEA for the
solution of BVPs of cylindrical specimens under triaxial
loading conditions. For such a purpose, the model pre-
sented above is enhanced with rate-dependent behaviour

based on Perzyna’s type visco-plasticity [Perzyna, 1966]. This
is a simple and effective approach that has been adopted in
several papers [Das et al., 2013, 2014, Mir, 2017, Mir et al.,
2018, Tengattini et al., 2022]. The pseudo rate-dependent
behaviour is contained in the constitutive model and there
are no inertia effects in the analysis of BVPs. The evolution
rules become rate dependent through the multiplier dλ/d t
such that:

dλ=
〈

y
〉
η

d t (63)

where η is the viscosity parameter and
〈

y
〉

is a dimension-
less overstress function derived from the yield function
of the rate-independent model, and 〈.〉 is the Macauley
bracket. The evolution rules for plastic strains and damage
can be rewritten as:

dεp
v = 2

〈
y
〉
η

(
rv

2(p −ρ)

Fv
2 − rs

2µ(D)
(
q −µ(D)p

)
Fs

2

)
d t (64)

dεp
s = 2

〈
y
〉
η

rs
2
(
q −µ(D)p

)
Fs

2 d t (65)

dD = 2

〈
y
〉
η

rD
2χD

FD
2 d t (66)

The behaviour of the rate-dependent model under differ-
ent rates of axial strain, and values of viscous parameter η is
illustrated in Fig. 6, extracted from [Mir et al., 2018].

The FEA results in Fig. 7 show the convergence of the so-
lution with respect to mesh refinement, using parameters
for Bentheim sandstone. The axial strain rate ε̇a is chosen
to be 10-5 /s, and viscosity parameter being calibrated as
η = 3 × 10−5 s/pa. Both macro responses of the specimen
and failure pattern do not vary significantly upon mesh re-
finement.

3. Bifurcation and transition from
diffuse to localised failure

As seen in Fig. 2, bifurcation of deformation marks the
transition from diffuse to localised failure. Beyond the bifur-
cation point, the behaviour of the specimen under consid-
eration is a BVP requiring enhancements in the structure of
constitutive models to describe correctly post-localisation
behaviour. This is a topic that has been extensively in-
vestigated [Mühlhaus and Vardoulakis, 1987, Neilsen and
Schreyer, 1993, Rice and Rudnicki, 1980, Rudnicki and Rice,
1975, Vardoulakis, 1989, Vardoulakis et al., 1978, Vardoulakis
and Sulem, 1995]. It is important to note that classical
constitutive models are not valid beyond the bifurcation
point unless they are enhanced to handle post-localisation
behaviour. Our proposed two-scale constitutive modelling
approach is an example of such enhancements that allows
correctly capturing both pre- and post-localisation be-
haviour. Therefore, the determination of bifurcation point is
an essential and important part of the approach presented
above, and this Section briefly presents how to determine
bifurcation points for the transition from diffuse to localised
failure in constitutive modelling.

The bifurcation condition based on the loss of positive-
definiteness of the acoustic tensor (or localisation tensor)
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Table 2. Model parameters for Bentheim and Darley Dale sandstones [Mir, 2017, Mir et al., 2018].

Sandstone E (GPa) ν β γ µ0 M pc (MPa) pt (MPa) rv rs

Bentheim [Baud et al., 2006] 19.25 0.27 0.85 0.95 0.10 1.20 420.00 -12.00 0.85 0.20
Berea [Baud et al., 2004] 14.00 0.20 0.90 1.00 0.05 1.10 380.00 -10.00 0.85 0.20

(a) Initial yield surface. (b) Behaviour.

Figure 4. Constitutive behaviour of Bentheim sandstone [Mir et al., 2018].

(a) Initial yield surface. (b) Behaviour.

Figure 5. Constitutive behaviour of Berea sandstone [Mir et al., 2018].

(a) Effect of strain rate (η 5×10−6 s/pa). (b) Effect of viscosity parameter (Ωε 10−5/s).

Figure 6. Rate-dependent behaviour in triaxial loading under 10MPa confining pressure (E = 20 GPa, ν = 0.27, pc =
420 MPa, pt = -12 MPa, M = 1.2, β = 0.85, γ = 0.95, µ0 = 0.1, rv = 0.85 and rs = 0.2).
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(a) Convergence of FEA results.

(b) Failure pattern, via damage contour.

Figure 7. Rate-dependent behaviour in FEA of a cylindrical specimen under 10MPa confining pressure [Mir et al.,
2018].

proposed by [Rudnicki and Rice, 1975] has been widely used
in the literature to detect bifurcation point of constitutive
behaviour. Recalling the relationship (38) rewritten in incre-
mental form:(

Do
i j kl −D i

i j kl

)
δεkl n j

−
[

f

h
Do

i j kl nl n j + 1− f

h
D i

i j kl nl n j

]
δuk = 0 (67)

It is usually assumed that the strain increment δεkl is
constrained to evolve continuously [Neilsen and Schreyer,
1993], and under such conditions the tangent moduli Do

i j kl

and D i
i j kl coincide at the onset of localisation. We do not go

into a debate here about the validity of such an assumption
which is questionable for elasto-plastic models with dis-
continuity of tangent modulus at yield point (elasto-plastic
stiffness for loading, and elastic stiffness for unloading),
the resolution of which requires further developments be-
yond the scope of this paper. Instead, the practical aspect
of such an assumption that allows a rather straightforward
way to detect the onset of localisation is addressed. Un-
der the assumption that Do

i j kl = D i
i j kl , the above equation

becomes:
1

h

(
D i

i j kl nl n j

)
δuk = 0 (68)

For non-trivial solutions (e.g. δuk 6= 0), it is required that:

det

(
1

h
D i

i j kl nl n j

)
= det

(
1

h
Ai k

)
= 0 (69)

where Ai k is the localisation tensor and 1
h Ai k has the physi-

cal meaning of stiffness of a localisation band of thickness h
and orientation defined by normal vector −→n . For elasto-
plastic models with discontinuous tangent modulus at the
onset of yielding, the determinant of the localisation ten-
sor also exhibits a jump from positive to negative values
corresponding to the switch from elastic to elasto-plastic
behaviour. Given the physical meaning of 1

h Ai k , the mini-

mum value of det
( 1

h Ai k
)

with respect to normal vector −→n
can be used to determine the orientation of the localisation

band. This condition, written as

min−→n
[det(Ai k )]6 0 (70)

has been applied to different models for soils, soft and hard
rocks for the determination of both onset of localisation
and orientation of the localisation band, with some re-
sults obtained having been validated against experimental
data. The readers can also refer to our earlier papers [Le
et al., 2020, 2019] for the application of such condition for
cohesive-frictional models representing the behaviour of a
localisation band of infinitesimal thickness. Figure 8 below
is an illustration of the onset of compaction localisation
determined under triaxial condition using a model based
on breakage mechanics [Nguyen et al., 2016a].

Stress states on the initial yield envelope are used for
localisation condition (69) and the results are highlighted
in red, with corresponding localisation angles indicated in
Fig. 8a. The zone with negative determinant of the deter-
minant of the acoustic tensor is indicated in Fig. 8b, along
with contour of this determinant plotted against the band
orientation angle and normalised mean stress ( p

Pcr
, with

Pcr the pressure at yield under hydrostatic loading con-
dition). As can be seen in Fig. 8b, for a given stress state
there is a range of inclination angles that are admissible for
bifurcation condition using (69) and the minimum value of
the determinant of the localisation tensor can be used to
determine the orientation of the localisation band.

For both hard and soft rocks, depending on the focus
on different modes of localised failure, different models
based on breakage mechanics [Das et al., 2011, 2014] and
damage mechanics [Mir, 2017, Mir et al., 2018], all coupled
with plasticity, have been developed and used with success.
Figure 9 presents the results on bifurcation obtained from a
damage-plasticity model for soft rocks described in Section
3 [Mir, 2017, Mir et al., 2018]. The blue thick line on the
initial yield surface in this figure indicates the stress states
at which bifurcation of deformation initiates. Three triaxial
loading paths in this figure at 10 MPa, 120 MPa and 250 MPa
confining pressures are illustrated and their intersections
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(a) Predicted zone of localisation. (b) Contour of the determinant of the acoustic tensor.

Figure 8. Onset of localisation and orientation of localisation band determined under triaxial condition using a
model based on breakage mechanics [Nguyen et al., 2016b].

(a) Onset of localisation.

(b) Determinant of localisation tensor at initial yield under different confining
pressure.

Figure 9. Onset of localisation in Berea sandstone determined under triaxial condition using a coupled damage-
plasticity model.

with the initial yield surface provide stress states for the
determination of onset of bifurcation using equation (69).
For each stress state, determinant of the localisation tensor
is plotted against angle of potential localisation band (with
respect to the horizontal). The shape of the curve gradu-
ally transforms and reflects the transformation of localised
failure modes: from shear localisation at low confining pres-
sure, which results in two inclined angles due to symmetry
in triaxial tests, to compaction localisation with a single
horizontal compaction band at sufficiently high confining
pressures. The theoretical results are consistent with the
experimental observation of shear-enhanced compaction
localisation in sandstones [Baud et al., 2004].

Similar results have also been obtained using a damage-
plasticity model for hard rocks [Mir, 2017]. The transfor-
mation of the curve in Fig. 10 also reflects the transition
from shear localisation to compaction localisation in triax-
ial loading conditions with increasing confining pressure.
The model’s predictions are also included for illustration
purpose, although it is clear that the post-peak prediction
is not meaningful due to localisation, making the problem
a BVP that cannot be handled by a classical constitutive
model. Behaviour of the model described in Section 3 after

being enhanced with an embedded localisation band using
our proposed two-scale constitutive modelling approach
will be illustrated in the next Section.

4. Analysis of localised failure
The damage-plasticity model described in Section 3 is used
for the analysis of localised failure in two different ways.
Its rate-dependent enhancement, presented in Section 3,
will be used in FEA to provide insights into local responses
in the specimen (inside and outside localisation band)
that follow different loading paths due to localisation. The
enhancement at the constitutive level using the proposed
thermodynamics-based two-scale approach allows describ-
ing and capturing correctly post-localisation behaviour at
the constitutive level. In other words, the proposed two-
scale approach enriches existing constitutive models with
size dependent behaviour required to deal with localised
failure and hence post-localisation behaviour can be cor-
rectly described and captured at the constitutive level. This
is of course a simplification of a much more complex BVP
so that localised failure can be tackled in a simplest possi-
ble but physically meaningful way at the constitutive level.
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(a) Stress-strain behaviour (left) and volumetric responses (right).

(b) Onset of localisation. (c) Determinant of localisation tensor at initial yield under different confining
pressure.

Figure 10. Onset of localisation (grey thick line) in Ural marble at different stress states at initial yield under triaxial
loading [Mir, 2017].

The benefits include (i) physically meaningful correlation
between behaviour and failure mode in constitutive mod-
elling that helps minimise the use of fitting parameters [Le
et al., 2018, 2019, 2017], (ii) good balance between compu-
tational efficiency and accuracy of the prediction [Nguyen
et al., 2017, Nguyen and Bui, 2020, Nguyen et al., 2016b],
and (iii) explicit links between meso-scale behaviour of
the localisation band and macro (specimen) behaviour
that are useful for the determination of behaviour inside
the localisation band from standard triaxial tests [Le et al.,
2022]. The readers can refer to our papers on the use of this
two-scale approach in FEM, MPM and SPH applications
[Bui and Nguyen, 2021, Le et al., 2018, 2019, Nguyen and
Bui, 2020, Nguyen et al., 2014, 2016b, Tran et al., 2019, Wang
et al., 2019, 2020]. The analysis of localised failure in this
Section illustrates the performance of the model against
detailed FEM modelling of a triaxial test. This assessment,
focusing on a sandstone under triaxial loading condition
and the mechanism of localized failure that a constitutive
model should possess to describe correctly both pre- and
post-localisation behaviour, has not been included in our
earlier publications listed above.

4.1. Calibration of model parameters
The behaviour and thickness of localisation band evolve

together and ideally these evolutions should be considered
in constitutive modelling and calibration of model param-
eters. However, once localized failure happens the problem
will become a BVP and hence modelling the evolutions of

the band thickness and material behaviour inside the band
requires solving a BVP. That approach is usually compli-
cated given it needs a regularisation technique to deal with
ill-posed BVPs due to localised failure and also complex pro-
cedures to calibrate two sets of parameters (a length scale,
and parameters of the constitutive model; see [Nguyen and
Houlsby, 2007]), subjected to several constraints (macro
specimen response, meso-scale responses including evolu-
tions of localisation band and its behaviour). In addition,
there are no explicit links between experimental data and
these parameters, making the identification and calibration
of parameters complicated, especially with the analysis of a
BVP needed for the calibration.

The approach proposed in this paper is a simplification
of physical observations briefly discussed above, in the
sense that the thickness of the band is fixed. The proposed
approach and derived models contain two set of param-
eters: thickness of the localisation band, and parameters
governing the behaviour inside this band. Therefore, the
calibration of model parameters is different from that of
classical continuum models (based on assumed homo-
geneous deformation). In this paper, a simple calibration
approach is used for illustration purpose only, in which
the determination of the band thickness and calibration
of parameters governing the mechanical behaviour of
the localisation band are not coupled. Parameters of the
constitutive model can be calibrated so that the onset of
localisation and orientation of localisation band are close to
experimental counterparts, beside being able to reproduce
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the trend of macro mechanical responses of the specimens.
The thickness of the band will then be used to obtain good
fit with experimentally measured mechanical responses.
This procedure is obviously an ad hoc process to achieve
good fit based on an extra length scale, given the two sets of
parameters controlling the continuum behaviour and thick-
ness of localisation band should correlate with each other,
as shown in our previous work on nonlocal approaches
[Nguyen and Houlsby, 2007].

In general, for the two-scale approach proposed in this
paper, the calibration of model parameters must be ac-
companied with a procedure to analyse results of triaxial
tests involving localised failure. This is because besides the
macro responses, both orientation and thickness of the
localisation band produced by the model must match their
experimental counterparts. This requires more experimen-
tal data than usual: both macro responses and meso-scale
details must be supplied, and this is not always the case
in standard triaxial tests. It can be assumed that the ori-
entation of localisation band can be supplied, as this is
straightforward and does not require complicated proce-
dures or instrumentations. The thickness h can be assumed
based on mean grain size (or aggregate size in concrete), or
from analysis of experimental data if advanced image based
instrumentations (DIC, X-ray) are available (see examples
in [Andò, 2013, Andò et al., 2013, Rattez et al., 2022]). It
is noted that the fixed value of band thickness is a strong
approximation and to the best of our knowledge there is no
consensus in determining it given this assumption does not
reflect well experimental observations (evolving thickness).
From the assumed value of thickness, the links between
meso behaviour inside the band and macro experimental
data can be used to obtain behaviour inside the band. This
meso scale behaviour should be used for the calibration of
model parameters. Details on this approach to analysing
experimental data involving localised failure has been elab-
orated and illustrated in [Le et al., 2022]. This analysis of
experimental data should be coupled with calibration pro-
cedures to obtain a good match between experiment and
modelling in both pre- and post-localisation stages, includ-
ing the onset and orientation of localisation band. Such a
more rigorous approach needs more time for investigation
and hence cannot be covered in this paper.

4.2. Results and analysis
Figure 11a shows the results of the FEA simulation of a

Bentheim sandstone specimen under drained triaxial test at
30 MPa confining pressure. In this FEA simulation, a local
defect is introduced as a weak element at about the centre
of each specimen to trigger localisation. The overall stress-
strain response of the specimen is calculated as the average
of the stress-strain responses of the material inside and out-
side the band. Responses of two elements inside and out-
side the localisation band are also plotted, showing different
loading paths: elastic unloading outside the band, and in-
elastic loading inside it. It is clear from this figure that such a
behaviour of a BVP cannot be correctly described by a classi-
cal continuum constitutive model that is formulated based

(a)

(b)

Figure 11. Average stress-strain responses for the
material inside and outside the localisation band for a
specimen of Bentheim sandstone under 30 MPa con-
fining pressure: (a) FE simulation. (b) The two-scale
model with f = h/H = 0.25 [Mir, 2017].

on the assumption of homogeneity. In this sense, any at-
tempt, without resorting to the underlying mechanisms of
failure, to obtain a good match with the post-localisation
macro responses of the specimen is merely a curve fitting
exercise, at least in our opinion.

The enhancement to the model presented in Section 3.1,
based on two-scale constitutive approach, can reproduce
the same trend of behaviour at a fraction of the computa-
tional cost compared to FEA (Fig. 11b). In particular the time
to complete the calculations at the material point level (us-
ing our FORTRAN code) is within a minute, while FEA time
(using ABAQUS and UMAT routine) is at the order of a few
hours. In this sense the difference is clearly at least 2 orders
of magnitudes (~1 minute vs. minimum 2-5 hours, depend-
ing the FE mesh and model, and also number of CPU cores
used). It is noted that the specimen and shear band drawn
in Fig. 11b, based on the angle obtained from the analysis
of the onset of localisation (Section 5), is for illustrative pur-
pose only, given all these details appear as parameters of the
two-scale constitutive model. The enhancement using the
proposed two-scale approach allows two different responses
inside and outside the localisation band, the combination of
which reproduces the experimentally-observed behaviour.
The model behaviour in this case is governed by the under-
lying mechanism of failure (shear localisation, with failure
mode indicated in Fig. 11b) and not based on curve fitting
model responses with experimental data as usually the case
in classical continuum models.
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Figure 12. Behaviour and failure mode of a specimen
of Bentheim sandstone under 30 MPa confining pres-
sure [Mir, 2017].

For illustration, the results from three different ap-
proaches that are based on the same damage-plasticity
model described in Section 3 are shown in Fig. 12, along
with the underling failure mode and experimental counter-
parts. The key point in the figure is the correlation between
the underlying failure mode and macro behaviour which is
missing in classical continuum models given such models
are formulated based on an incorrect assumption of ho-
mogeneous distribution of stress and strain in a RVE. Of
course, classical continuum models can be fine-tuned to
fit the experimental results. However, a good match with
experimental result without being based on a correct mech-
anism of failure is physically meaningless, as such a match
is purely curve fitting. It is therefore stressed here that the
mechanism of failure (or failure mode) should be focussed
on first in constitutive modelling of geomaterials, before
attempting the fine-tuning process for calibration of model
parameters and validation with experimental data. In this
sense, the proposed structure of the two-scale model and
the prediction of orientation of localisation band are the first
steps that are then followed by tuning other parameters. In
the above example, our volume fraction f = h/H = 0.25 used
in the two-scale approach is obtained for a good fit with ex-
perimental data, using parameters of the damage-plasticity
model presented in Section 3.

The effect of thickness of localisation band on constitu-
tive response is illustrated in Fig. 13. This is the size effect
behaviour given the specimen response scales with the ra-
tio between thickness of the band and the size of the volume
element containing the band. For comparison purpose, the
thickness of the localisation band can be fine tuned so that
the overall response produced by the two-scale model can
match that by FEA using the same core damage-plasticity

Figure 13. The effect of the width of the localisation
band on the average stress-strain response of a speci-
men modelled by means of the two-scale model [Mir,
2017].

model enhanced with rate-dependent regularisation. Both
macro response and variation of kinematic fields across the
localisation band obtained using the two-scale model and
FEA can be assessed against each other (Fig. 14).

The two-scale model assumes the width of the locali-
sation band to be invariant throughout post-localisation
phase of deformation. This assumption approximates the
variations of the kinematic field within the localisation band
and the surrounding bulk and can help reduce the compu-
tational cost significantly given the whole BVP analysed
using FEA can be approximated with reasonable accuracy
but at a fraction of the computational cost. It is noted that
the FEA based on the rate-dependent regularised model
above (or alternatively non-local and gradient models) can
definitely produce much better gradual variation of the
kinematic fields across the localisation band. However, the
implementation and application of these models require a
discretisation size smaller than the width of the localisation
band. If the location of the band is also unknown, then the
whole domain under consideration should be discretised
with the spatial resolution smaller than the bandwidth. This
would severely limit the applications of high order models
in very large-scale problems of geotechnical and mining en-
gineering. The two-scale model approximates the variation
of the displacement and strain fields by assuming a constant
bandwidth h and uniform distribution of stress and strain
inside the localisation band. This bandwidth is then directly
incorporated in the constitutive equations and the inter-
action between the materials inside and outside the band
at the constitutive level. Therefore, the application of the
two-scale approach and models does not require element
size smaller than the bandwidth, but in fact the opposite:
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(a) Macro response.

(b) Strain and displacement profile across the localisation band at late
stage of the failure process.

Figure 14. Two-scale approach vs. FEA.

the element size (or particle size) should be larger than
the thickness of the localisation band contained in it. This
feature of the two-scale model makes it desirable for large-
scale modelling in geotechnical and mining engineering.
However, for smaller scale problems, models regularised
using rate-dependent, nonlocal or gradient theories com-
bined with FEA produce more accurate results, although at
significantly higher computational costs.

Nevertheless, assuming a constant width for the localisa-
tion band poses some challenges in selecting the bandwidth
h as an input parameter for the two-scale approach. A
common strategy for measuring the length scale either in
modelling or experiments [Rattez et al., 2022] is to use the
profile of strain across the localisation band. The main
question is, therefore, how the length scale h and variation
of constitutive behaviour can be quantified across the local-
isation band. Providing an answer to this question, however,
requires further experimental and numerical investigations
at the grain scale, all of which are outside the scope of this
study. Along this line, an attempt has been made to idealise
the evolution of the localisation band as a zone of uniform
distribution of deformation but with thickness evolving
[Nguyen and Bui, 2020]. This can be a basis for further
developments.

5. Conclusions
We have shown the benefits of adding the behaviour of
another scale below the macro RVE scale to a constitutive
model. The proposed two-scale constitutive modelling ap-
proach can be formulated thermodynamically consistently,
and can be used to enhance a classical continuum model

to describe correctly post-localisation behaviour at the con-
stitutive level. In principle, any available continuum model
can be used in the proposed two-scale approach. Only an
extra parameter related to the thickness of the localisation
band is needed, and the orientation of the band can be pre-
dicted using the employed continuum constitutive model.
We stress on the underlying mechanism of localised failure
as a prerequisite in constitutive modelling of geomaterials
that should be incorporated in the structure of constitutive
model before attempting to calibrate model parameters and
perform validation. In this sense, a good match with experi-
mental data is only physically meaningful if is accompanied
by a correct underlying mechanism of failure. The examples
and results provided are to illustrate key features of the pro-
posed two-scale constitutive modelling approach. As can be
seen they do not provide excellent match with experimental
data as it is not the purpose of the illustration. Instead, our
discussions are on the physically meaningful aspects of the
approach given there are still several unsolved issues to
improve the consistency and correctness of the proposed
approach for better matches with experimental results.
They will be addressed in our future work.
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