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Abstract. Coupled thermo-hydro-mechanical (THM) processes are
ubiquitous in subsurface energy production and geological utiliza-
tion and storage operations. Numerical simulation of strongly coupled
THM processes is a non-trivial task, yet required to predict the per-
formance of many applications in energy geomechanics. The majority
of existing and open source THM numerical codes are not end user
adaptable and do not include elastoplasticity coupled to mass and
energy balance equations. This article presents an open source thermo-
poroelastoplastic finite element numerical code with a fully-coupled
monolithic solution strategy that is solved with Fenicsx computing
platform. The formulation employs a mixed finite element scheme for
pore pressure diffusivity, Petrov-Galerkin methods for energy trans-
port, mean stress dependent yield surface, and non-associative plastic
potential. The numerical solution is verified with small-scale conven-
tional triaxial tests, including drained and undrained compression and
extension. We present example simulations reaching the yield surface
induced by coupled hydro-mechanical and thermal loads. In addition,
we present two example large-scale applications related to geothermal
energy and carbon geological storage. Results show that the numerical
solution accurately predicts changes of temperature, pore pressure, and
stress for a wide range of model geometries and boundary conditions,
including the plastic response. The code is freely available to the general
community for use and modification.
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Open Geomechanics, 2024, article no. 1 www.opengeomechanics.org
ISSN: 2644-9676

https://doi.org/10.5802/ogeo.17
mailto:matthewmclean@utexas.edu
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.centre-mersenne.org/
www.opengeomechanics.org


1. Introduction
The modeling of coupled thermo-hydro-mechanical (THM)
processes is of increasing importance in a range of subsur-
face activities including hydrocarbon recovery [Segall and
Fitzgerald, 1998], geothermal energy [Evans et al., 1999, Kohl
et al., 1995], nuclear waste storage [McTigue, 1986, Palci-
auskas and Domenico, 1982], and carbon geological storage
[Jung et al., 2020, Rutqvist, 2012, Thompson et al., 2021]
among others. Over the past several decades, many large-
scale field tests have been conducted in these areas. A few
projects in the US include: Fenton Hill enhanced geother-
mal system (EGS) project [Mortensen, 1978], Utah FORGE
EGS project [Allis et al., 2016], Waste Isolation Pilot Plant
for permanent geological storage of nuclear waste [National
Research Council et al., 1996], Cranfield CO2 geological stor-
age project [Nemeth, 2004], and the hydraulic fracturing test
site (HFTS) for multi-cluster hydraulic fracturing in shale
[Ugueto et al., 2021]. Furthermore, understanding of rock
shear yield and failure induced by coupled THM processes
has recently gained significant interest. For example, injec-
tion of non-native fluids into the subsurface tends to reduce
effective stresses, potentially creating new fractures and
reactivating natural fractures and faults [Martínez-Garzón
et al., 2014, Streit and Hillis, 2004]. Recent work has focused
on fault reactivation in geothermal systems [Kivi et al., 2022]
and in mechanical integrity of caprock response to CO2

injection [Thompson et al., 2021], both driven by coupled
changes of temperature and pore pressure.

Numerical modeling of the subsurface is important for
understanding complex THM coupled responses and opti-
mizing operating conditions [Ghassemi, 2012, Pandey et al.,
2018]. However, accurate numerical simulation of THM
processes including elastoplasticity poses a major challenge
because (1) they can have a high degree of coupling, i.e., one
process facilitates or progresses another, (2) each process
operates under different spatial and time scales, (3) cou-
pling between deformation and fluid flow becomes stronger
as rock permeability decreases, and (4) all processes are sen-
sitive to presence of rock discontinuities that reach shear
yield [Phillips and Wheeler, 2008, Xia et al., 2017]. Thus,
accurately predicting the porous media response requires
simultaneous consideration of thermal, mechanical, and
hydraulic effects. Furthermore, THM coupled feedback
loops can arise in the subsurface and heighten modeling
complexity. In EGS reservoirs, for example, cold injected
fluid tends to flow to areas of high fracture permeability, in-
ducing local thermal stress relaxation and increasing stress
dependent permeability, causing more injection fluid to
flow along the same path [McLean and Espinoza, 2023].
Hence, numerical simulation of strongly coupled fields is a
non-trivial task, yet required to predict the performance of
many applications in energy geomechanics.

Numerous mathematical models and computer codes
have been recently developed to simulate THM processes
in the subsurface including TOUGH-FLAC [Rutqvist, 2011],
OpenGeoSys [Kolditz et al., 2012], FALCON (MOOSE based)
[Xia et al., 2017], FEHM [Kelkar et al., 2014], CODE_BRIGHT
[Olivella et al., 1996] and STOMP [Fang et al., 2013], among

others (Table 1). Some of the codes are based on a well-
established flow simulator with coupling of mechanically
induced porosity changes through sequential solution
scheme (TOUGH-FLAC, FALCON, and STOMP) while oth-
ers are based on the theory of thermo-poroelasticity with
monolithic solution scheme (OpenGeoSys). Preset model-
ing packages - both commercial and open source - limit
the end user’s ability to modify the underlying code, e.g.,
matrix assembly. Alternatively, open source computing plat-
forms such as Fenicsx [Logg et al., 2012] allow for maximum
end user control over constitutive equations, variational
formulation, and solution strategy but require a high level
understanding of the physics and the finite element method.
Furthermore, open source software is freely available and
does not present paid licensing barriers.

This paper presents the theory, verification, and appli-
cation of a freely available and end user adaptable thermo-
poroelastoplastic numerical solution for subsurface ap-
plications. We develop a three-dimensional THM finite
element model that accounts for shear yield with the open
source computing platform Fenicsx. The model implements
full thermo-poroelastic coupling (some authors alterna-
tively use tight-coupling, e.g., Lindsay et al. [2022], Wilkins
et al. [2021]) and mean stress dependent yield surface.
The numerical code is available at the GitHub repository
listed in data availability. Section 2 describes in detail the
modeling objectives, constitutive equations, elastoplastic
model, and governing equations. Section 3 presents the
spatial discretization and variational formulation. Section 4
verifies the numerical model against conventional drained
and undrained triaxial compression/extension tests. We
simulate displacement controlled and temperature con-
trolled tests, both with and without volumetric plastic
dilation. Finally, section 5 presents example simulations of
(1) a closed-loop geothermal system where shear yield is
thermally induced and (2) a compartmentalized reservoir
subject to cold fluid injection where shear yield is driven
mostly by pressure build-up.

2. Thermo-poroelastoplastic Model
2.1. Modeling Approach

The objectives of the numerical model are to: (1) incor-
porate stress, pressure, and porosity constitutive behavior
based on the theory of thermo-poroelasticity, (2) extend
traditional THM elastic coupling to include effects of rock
mass inelasticity, (3) utilize a locally mass conserving finite
element discretization for fluid flow, (4) preserve numerical
stability in the presence of advection dominated energy
transport, and (5) utilize open source computing platforms
such that commercial licensing barriers are prevented. First,
the evolution of porosity is important for accurate solution
to THM coupled processes, which affects mass and energy
transport through the connected pore space. Sequential
solution schemes often utilize empirical functions or simple
poroelastic models (neglecting contrasting solid matrix and
pore fluid thermal expansion coefficients) to describe me-
chanically induced porosity changes, e.g., TOUGH-FLAC,
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Table 1. Comparison between existing THM codes and our code. Discretization methods include FD: finite differ-
ence, FV: finite volume, and FE: finite element. Basis functions include CG: continuous Galerkin, DG: discontinuous
Galerkin, and RT: Raviart–Thomas. We utilize a mixed form for mass balance with pressure (DG) and flux (RT) as un-
knowns. In our code, porosity changes arise from the theory of thermo-poroelasticity.

Code Coupling Plasticity
Theory of
thermo-

poroelasticity

Fluid flow
discretization

Displacement
discretization

Solution
scheme

Licensing

TOUGH-FLAC THM Yes No FD FV seq. commercial
OpenGeoSys THMC No Yes FE (CG) FE (CG) seq./mono. open source
FALCON THMC Yes No FE (CG) FE (CG) seq. open source
FEHM THM Yes No FV FE (CG) mono. open source
CODE_BRIGHT THMC Yes No FE (CG) FE (CG) mono. open source
COMSOL THMC Yes No FE (CG) FE (CG) seq./mono. commercial
STOMP THMC No No FV FE (CG) seq. commercial
Our code THM Yes Yes FE (DG/RT) FE (CG) mono. open source

MOOSE, and STOMP (Table 1 - theory column). We aim to
expand the storage term in the mass balance equation to
reflect the theory of thermo-poroelasticity, enabling simula-
tion of non-isothermal undrained response (e.g., cooling of
a brine saturated caprock in geological carbon storage set-
tings). Moreover, the theoretical approach requires standard
poroelastic constants (Biot coefficient, drained bulk modu-
lus, etc.) as inputs while empirical models utilize additional
constants which may not be easily measured or known.
Second, rock mass inelasticity is important where subsur-
face fluid injection or heat drainage may drive the state of
stress to shear yield. Recent work in geothermal systems
highlights the need of utilizing an elastoplastic constitutive
law because thermal destressing can cause nonphysical
states of stress in tension, well beyond the tensile strength
of geothermal reservoir rocks [Im et al., 2021]. Third, high
injection rates of a cool fluid in the subsurface leads to
advection dominated energy transport near the injector.
The standard Galerkin method tends to cause non-physical
oscillations in the temperature field under this condition.
Yet, accurate predictions of heat transport are important to
THM coupled processes. We, therefore, aim to stabilize the
energy balance equation such that no oscillations occur.
Lastly, we aim for the code to provide maximum flexibility
to the end user by (1) providing a reference/source code
with examples (end user modifications through forking a
copy of the code) and (2) utilizing open source computing
platforms.

2.2. Constitutive Laws
The constitutive equations of a saturated thermo-

poroelastoplastic solid are [Cheng, 2016, Wood, 2004]:

dσi j =
(
K − 2G

3

)
δi j dεe

i i +2Gdεe
i j −αδi j dp−βd Kδi j dT (1)

dζ=αdεi i + dp

M
−βe dT (2)

s = cd

To
(3)

where σi j is the Cauchy stress tensor, K is the drained bulk
modulus, G is the shear modulus, εe

i i is the elastic volu-
metric strain, εe

i j is the elastic strain tensor, α is the Biot

coefficient, p is the pore fluid pressure, βd is the drained
volumetric thermal expansion coefficient of the solid matrix
(βd = dεi i /dT for a drained thermal expansion test without
constraints), T is the temperature, ζ is a porosity strain
equal to the variation in pore fluid content for isothermal
jacketed drained loading (dp = 0, dT = 0), M is the Biot
modulus, βe is the volumetric thermal expansion coeffi-
cient for fluid content variation at constant bulk volume, s
is entropy, and cd is the drained specific heat at constant
strain. The porosity strain ζ assumes complete saturation
and defines the unit change in pore volume. Total strain

εi j = 1
2

[
∂ui
∂x j

+ ∂u j

∂xi

]
(ui is displacement) is the summation

of recoverable elastic (e ) and irrecoverable plastic (p ) parts:
εi j = εe

i j + ε
p
i j . The equations above neglect heat gener-

ation at high strain rates, rapid fluid pressure changes,
and assume all porosity is connected. We also neglect heat
generation from high plastic strain rate (e.g., rapid and
localized failure of faults) because the plastic strain rate
required to significantly change the temperature is unlikely
to be reached for engineering activities in the subsurface
over long-times with small increments, e.g., heat extraction
and fluid injection over decades. A first order approximation
of the temperature change due to inelastic deformation is
∆T = σyε

p /cv where cv is the volumetric heat capacity, εp

is the inelastic shear strain, and σy is the shear stress where
failure occurs [Ben-Zion and Sammis, 2013]. For example,
consider a uniaxial (vertical) strain response to cooling for
a rock with isotropic initial stress of 64 MPa (∼ 5 km depth)
and many preexisting fractures such that cohesion is zero.
An accumulated plastic shear strain of 0.5 will only increase
the rock temperature 10°C. The reader is referred to Cheng
[2016] for thermo-poroelastic analytical solutions.

Altering the temperature of low permeability porous me-
dia at constant bulk volume can change the pore fluid pres-
sure if (1) the solid matrix and pore fluid have different ther-
mal expansion coefficients and (2) heat conduction propa-
gates quicker than pore pressure diffusion. The magnitude
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of thermally induced pressure change is controlled by [Mc-
Tigue, 1986, Salimzadeh et al., 2018]:

βe =αβd +n
(
β f −βd

)
(4)

where n is the porosity and β f is the volumetric thermal
expansion coefficient for the saturating pore fluid. The Biot
modulus is the inverse of the storage coefficient at constant
bulk volume and is equal to:

M = Ku −K

α2 (5)

where Ku = K /(1−αB) is the undrained bulk modulus and
B is Skempton’s coefficient [Coussy, 2004].

To illustrate thermo-poroelastic undrained response
caused by temperature changes, consider a porous medium
under constant bulk volume with either low permeability
or sealed boundaries such that ζ = 0 (no pore fluid in-
take/escape). Lowering the temperature by dT results in a
pore pressure change of dp = Mβe dT and total mean stress
change of dσi i /3 =−KuβudT where βu = βd +nB

(
β f −βd

)
is the undrained thermal expansion coefficient. Hence, low-
ering the temperature induces tensile total stress changes.
Mean effective stress change, however, is mitigated by
pore fluid pressure decrease. For example, the difference
in drained and undrained effective mean stress change is
equal to (1−α) Mβe dT with the drained response inducing
more tensile effective stress changes.

2.3. Elastoplastic Model
First, elastic strain increments dεe

i j depend on change

in stress and the fourth-order elastic stiffness matrix De
i j kl ,

dσi j = De
i j kl dεe

i j [Wood, 2004]. We employ a perfectly plas-

tic Drucker-Prager yield surface f and non-associative
plastic potential g accounting for mean effective stress de-
pendency p ′ = − 1

3σ
′
i i to calculate plastic strain increments

[Drucker and Prager, 1952]:

f = q −Mφp ′− cφ (6)

g = q −Mψp ′ (7)

where q = ( 3
2

(
dev(σ)i j dev(σ)i j

))1/2
is the deviatoric stress,

Mφ = 6sinφ/
(
3− sinφ

)
is a parameter that matches the

yield function to Mohr-Coulomb friction angle φ (i.e.,
the Drucker-Prager cone is circumscribed by the Mohr-
Coulomb surface), Mψ = 6sinψ/

(
3− sinψ

)
is a non-

associative parameter depending on the dilation angle ψ,
and cφ = 6c cosφ/

(
3− sinφ

)
is a parameter that matches the

yield function to Mohr-Coulomb cohesive strength c. This
formulation uses Terzaghi effective stress σ′

i j =σi j +pδi j to

evaluate the yield criterion (refer to [Gueguen and Bouteca,
1999] for discussion on Biot and Terzaghi effective stress
at yield). The Drucker-Prager failure criterion is chosen
for ease of numerical implementation as it has a smooth
yield surface, avoiding discontinuous derivatives of the
yield function. Future versions of the code, however, are
planned to include other failure criterion for rocks, e.g.,
Mohr-Coulomb, Mogi, Lade, etc.

For loading/unloading beyond the elastic regime, plastic
strain increments dεp

i j must return the state of stress to the

yield surface so that the plastic consistency conditions are

satisfied: dλ ⩾ 0; f = 0; ∂ f
∂σ′

i j
dσ′

i j = 0. Plastic strain incre-

ments are given by:

dεp
i j = dλ

∂g

∂σ′
i j

(8)

where dλ is a scalar plastic multiplier. The consistency con-
ditions and absence of strain hardening/softening permit
obtaining a closed-form solution to the plastic multiplier:

dλ=
∂ f
∂σ′

i j
De

i j kl dεi j

∂ f
∂σ′

i j
De

i j kl
∂g
∂σ′

i j

(9)

Notice that Eq. 8 and 9 are valid for several constitutive laws,
e.g., poroelastic, thermoelastic, etc. The numerator of Eq. 9
computes the stress increment induced by the total strain
increment, i.e., it is equal to the stress increment without
plastic response. Some plasticity formulations refer to this
as the elastic trial stress increment: dσ′,e

i j [Itasca Consulting

Group, Inc., 2019]. We employ the following form of the plas-
tic multiplier for monolithic numerical implementation:

dλ=
〈 f

(
σ′,e

i j

)
〉+

f ′
(
De

i j kl
∂g
∂σ′

i j

) (10)

where σ′,e
i j = σ′

i j

(
dεi j +εe,k−1

i j , pk ,T k
)

is the elastic trial

stress evaluated with current total strain increment and
elastic strain from the previous time step (k − 1), 〈 f 〉+ =
1/2

(
f +| f |) is the positive part of the yield function, and

f ′ is the yield function without the cohesion constant, i.e.,
f ′ = f + cφ. This form returns dλ > 0 if the yield function
- assuming no plastic response - becomes larger than zero
and returns dλ = 0 if the state of stress remains in the
elastic region. Note that the elastic trial stress reduces to

σ′,e
i j = σ′

i j

(
εk

i j −ε
p,k−1
i j , pk ,T k

)
after expanding the strains.

Moreover, the denominator of Eq. 10 is a constant in ab-
sence of strain hardening/softening, and it is equal to:

f ′
(
De

i j kl
∂g
∂σ′

i j

)
= 3G + K MφMψ. An exponential strain soft-

ening model is formulated and verified in Appendix A.
Lastly, the elastoplastic tangent stiffness matrix Dep

i j kl de-

scribes modulus reduction at yield, and it is equal to:

Dep
i j kl = De

i j kl −
De

i j kl
∂g
∂σ′

i j

∂ f
∂σ′

i j
De

i j kl

3G +K MφMψ
(11)

For perfectly plastic materials, the elastic moduli degrade
from initially large values (K ,G) to zero, i.e., total strain
changes cause no change of stress.

2.4. Governing Equations
Fluid flow and heat transfer in a deformable porous solid

are coupled. Changes of solid strain, pore pressure, and/or
temperature result in changes of momentum, mass, and en-
ergy balance [Bai and Abousleiman, 1997]. The quasi-static
equations of a fluid saturated and non-isothermal porous
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system are [Biot, 1941, Palciauskas and Domenico, 1982]:

Solid equilibrium:

∂

∂xi

(
Dep

i j kl

(
∂uk

∂xl
− βd

3
δkl∆T

))
−α ∂p

∂xi
= bi (12)

Mass balance:

α2

Ku −K

∂p

∂t
− k

µ

∂2p

∂x2
i

+α∂εi i

∂t
−βe

∂T

∂t
= f p (13)

Energy balance:

∂T

∂t
−αT

∂2T

∂x2
i

+
(
ρc

)
f(

ρc
)

s

q f
i

∂T

∂xi
= f T (14)

where bi is the gravitational body force, k is the permeabil-
ity, µ is the pore fluid viscosity, f p is fluid source/sink, αT is
the solid matrix thermal diffusivity, ρc is the volumetric heat

capacity of the solid matrix (s) and fluid ( f ) phases, q f
i is the

Darcy velocity, and f T is heat source/sink. The mass balance
equation assumes permeability and pore fluid viscosity are
constants and, thus, they are taken out of the divergence op-

erator. Thermal strain (βd
3 δkl∆T ) is calculated with respect

to the in-situ temperature distribution.

mechanical
(elastic)

mechanical
(plastic)

hydraulic

thermal

α
∂p
∂xi

α
∂εi i
∂t

βd
3 δkl∆T

q f
i
∂T
∂xi

βe
∂T
∂t

Dep
i j kl σ′,e

i j

Figure 1. Thermo-poroelastoplastic coupling
scheme considered in this work.

In addition to traditional THM elastic coupling, this
work considers the influence of yield on solid equilibrium
and coupling scheme (Figure 1). The added coupling of
elastoplasticity consists of evaluating the yield criterion and
returning either (1) zero plastic strain if the state of stress is
in the elastic region or (2) non-zero plastic strain increment
if thermal, hydraulic, and mechanical loads drive the state of
stress to shear failure. A brief description of the considered
couplings is:

• α
∂εi i
∂t : fluid intake and escape caused by bulk vol-

ume changes

• α
∂p
∂xi

: alteration of total stress caused by pore fluid
pressure

• βd
3 δkl∆T : influence of thermal expansion and con-

traction on total strain
• βe

∂T
∂t : fluid intake and escape caused by contrasting

thermal expansion between solid matrix and pore
fluid

• q f
i
∂T
∂xi

: convective energy transport by fluid flow
through connected pore space

• Dep
i j kl : evaluation of elastoplastic tangent stiffness

matrix (moduli degradation at yield)
• σ′,e

i j : plastic correction to return the state of stress to

the yield surface

3. Numerical Solution
The governing equations are derived in the weak form and
solved with the freely available Fenicsx computing platform
[Logg and Wells, 2010], relying on the nonlinear solver pro-
vided in dolfiny [Habera and Zilian, 2022]. This approach is
ideal to tailor the code to solve subsurface problems, a func-
tion that is rarely available in commercial codes and preset
open source codes, e.g., full THM coupling and poroelasto-
plasticity. The numerical solution was verified to work with
Fenicsx version 0.6.0. Additional changes may be required
for future releases.

Coupled fluid flow and geomechanics is often solved
with a displacement-pressure formulation. However, con-
ditional stability arises with continuous finite elements
in the presence of undrained response where small time
steps may cause oscillations [Kim, 2010]. We, therefore,
utilize continuous elements for displacements and a mixed
space for fluid flow consisting of piecewise constant for
pressure and Raviart-Thomas elements for Darcy velocity.
The main advantages of this formulation are: (1) it provides
local mass conservation, (2) it avoids pressure oscillations
- if storage coefficient is not zero, (3) it eliminates post-
processing techniques required to recover the velocity field,
and (4) it provides greater accuracy in the velocity field
which may be of high interest for coupling with advective
heat transport [Berger et al., 2017, Phillips and Wheeler,
2007a]. The main disadvantage, however, is that the mixed
method increases total degrees of freedom. We balance
this through utilizing lowest-order elements for pressure
and velocity. Furthermore, oscillations tend to occur when
thermal advection dominates energy transport and utiliz-
ing continuous Galerkin methods. We, therefore, use the
Petrov-Galerkin method for the temperature field to avoid
numerical oscillations [Brooks and Hughes, 1982].

This formulation solves for solid displacement ui , plastic

strain ε
p
i j , fluid pressure p, Darcy velocity q f

i , and temper-

ature T that is in local equilibrium between rock matrix
and pore fluid. Suitable test function spaces for thermo-
poroelastoplasticity are:

Vu = {
δui ∈ H 1 (Ω) |δui = uD on ∂Ω

}
Vε =

{
δε

p
i j ∈ L2 (Ω)

}
Vp = {

δp ∈ L2 (Ω)
}

Vq =
{
δq f

i ∈ H (div) |δq f
i ni = qD on ∂Ω

}
VT = {

δT ∈ H 1 (Ω) |δT = TD on ∂Ω
}

(15)

where Ω is the three-dimensional domain, ∂Ω is the do-
main boundary, “δx” is the test function, and the sub-
script (D ) is the Dirichlet boundary condition [Brezzi et al.,
1985, Haagenson et al., 2020, Logg et al., 2012]. Constant
pore pressure boundary conditions are enforced weakly

Open Geomechanics, 2024, article no. 1
Matthew L. McLean & D. Nicolas Espinoza, An open source FEM code for solving coupled thermo-poroelastoplastic processes 5



through the variational formulation. H 1 (Ω), L2 (Ω), and
H (div) are the Sobolev spaces [Logg et al., 2012]. Time
integration is performed with the implicit Euler method:
∂(·)
∂t = [

(·)t − (·)t−∆t
]

/∆t . The Euler method is used for
simplicity in deriving the variational form. Recent work
shows that the implicit Euler scheme exhibits similar
convergence profiles to that of higher order schemes for
the displacement-mixed discretization of poroelasticity
[Phillips and Wheeler, 2007b].

The solution scheme is monolithic, solving all dependent
variables simultaneously. Therefore, Newton iteration and a
direct linear solver are employed to solve the coupled non-
linear equations through PETSc [Balay et al., 2022]. Although
requiring more computation time, the direct linear solver
is chosen for ease of implementation over more advanced
Newton-Krylov methods for poroelasticity [Franceschini
et al., 2021, Frigo et al., 2021]. The solution strategy is shown
in Algorithm 1 (note: J is the Jacobian, F is the total residual,
x is the solution vector, i is the iteration number, and k is
the current time step).

Algorithm 1 Monolithic solution scheme

1: set t = 0, k = 0
2: set initial values

(·k−1
)

3: while t ⩽ tmax do
4: while error⩽ tolerance do
5: linear solve J (xi )∆xi =−F (xi )
6: update xi+1 = xi +∆xi

7: i += 1
8: if 1

volume

∫
Ω f

(
σ′

i j

)
dΩ⩾ tolerance then

9: repeat step 4

10: set xk−1 = xk

11: t +=∆t
12: k += 1

Multiplying the governing equations by a test function
and integrating over the domain, results in the discrete
variational thermo-poroelastoplastic problem: find uk

i ∈Vu ,

ε
p,k
i j ∈Vε, pk ∈Vp , q f ,k

i ∈Vq , and T k ∈VT such that

Solid equilibrium:∫
Ω

(
σk

i jδεi j −biδui

)
dΩ=

∫
∂Ω

(tiδui )d∂Ω (16)

Plastic strain:∫
Ω

((
ε

p,k
i j −εp,k−1

i j

)
−dλ

∂g

∂σ′
i j

)
δε

p
i j dΩ= 0 (17)

Mass balance:∫
Ω

(
α

(
εk −εk−1

)
+ 1

M

(
pk −pk−1

)
+∆t

∂q f ,k
i

∂xi
(18)

−βe

(
T k −T k−1

))
δpdΩ=

∫
Ω
∆t f pδpdΩ

Fluid flux:∫
Ω

(
µ

k
q f ,k

i δq f
i −pk

∂δq f
i

∂xi

)
dΩ= (19)

−
∫
∂Ω

pD

(
niδq f

i

)
d∂Ω

Energy balance:∫
Ω

(
1

∆t

(
T k −T k−1

)
δT +αT

∂T k

∂xi

∂δT

∂xi

)
dΩ (20)

+
∫
Ω

((
ρc

)
f(

ρc
)

s

q f ,k
i

∂T k

∂xi
δT

)
dΩ

=
∫
Ω

(
f TδT − h

2|q f ,k
i |

q f ,k
i

∂δT k

∂xi
R

)
dΩ

where
(·k)

is the solution at time t ,
(·k−1

)
is the solution at

time t −∆t , bi is the gravitational body force, ti = σi j ni is
the applied traction (e.g., total vertical stress at the depth of
the model if not using a mechanical earth model), f p is a
fluid source/sink applied as the Dirac delta function to re-
strict injector/producer flow rates to interior “well” nodes,
pD is the Dirichlet pressure boundary condition imposed
weakly, f T is a heat source/sink for injector wells if injec-
tion fluid is at a different temperature than the reservoir, h
is the equivalent mesh element diameter, and R is the resid-
ual of the strong form energy balance equation (Eq. 14). The
variational form of the energy balance equation is stabilized
with the streamline upwind Petrov-Galerkin method [Brooks
and Hughes, 1982]. In the mixed form for fluid flow, Dirichlet
pressure boundary conditions are weakly imposed as nat-
ural conditions in Eq. 19 while Neumann boundary condi-
tions (flux) are essential. This is opposite to the pressure only
formulation where Dirichlet boundary conditions are essen-
tial and Neumann boundary conditions are natural [Pan and
Rui, 2012].

4. Verification: Triaxial Simulation
We verified the numerical solution against expected theo-
retical solutions for conventional triaxial compression and
extension tests. In this section, we consider (1) an axial dis-
placement controlled drained compression test, (2) an axial
displacement controlled undrained compression test, and
(3) temperature controlled drained/undrained compression
and extension tests. Undrained conditions are simulated
by decreasing the permeability rather than by increasing
the load rate. The modeling domain is a three-dimensional
cylinder with diameter equal to 25 mm, height equal to
62.5 mm, discretized in ∼ 1,390 tetrahedral elements. Total
degrees of freedom are 45,799. We performed a convergence
study with respect to mesh size with results available in the
following sub-section. All simulations begin with an initially
unloaded sample, followed by isotropic loading to a pre-
scribed mean effective stress of 10 MPa, and driven to yield
by increasing deviatoric stress. Mechanical and thermal
loads are applied incrementally through a constant load
rate with two modalities:

• Displacement controlled test: imposed axial strain
is equal to a load rate of 0.1% per minute times the
current time. Maximum axial strain is 1.5% for a
total simulation time of 15 minutes.

• Temperature controlled test: imposed temperature
change is equal to a thermal load rate of 16.67 ◦C
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per minute times the current time. Maximum tem-
perature change is 250 ◦C, enough to drive the state
of stress to shear failure in either compression or
extension under axially constrained condition. Total
simulation time is also 15 minutes.

Material properties are shown in Table 2. Simulation of
undrained response under constant load rate requires char-
acteristic pore pressure diffusion time (tch = h2µ/kM with
h as the rock sample height) to be significantly larger than
the time-step of 36 seconds. Hence, tch ≈ 0.004 seconds for
the drained simulations and tch ≈ 40000 seconds for the
undrained simulations. Subsections 4.2 and 4.3 present re-
sults for the three cases. The numerical solution follows con-
ventional elasticity sign convention. Results are converted
to geomechanics sign convention, e.g., compressive stress
and contraction strain are positive in a post-processing step.

Table 2. Poro-elastoplastic properties for model ver-
ification.

Property Value Unit

Bulk modulus: K 3.5 GPa
Shear modulus: G 2.0 GPa
Biot modulus: M 8.9 GPa
Biot coefficient: α 0.9 -
Uniaxial comp. strength: UC S 5.0 MPa
Friction angle: φ 30 ◦
Dilation angle: ψ 0, 7.5 ◦
Permeability: k 10−13, 10−20 m2

Porosity: n 0.2 -
Porous solid expansion: βd 6×10−5 1/◦C
Fluid mass expansion: βe 8×10−5 1/◦C

4.1. Mesh Convergence Study
We performed a convergence study under increasing lev-

els of mesh refinement for the triaxial verification simula-
tions with the material properties given in Table 2. The max-
imum imposed axial strain rate 1.5% is discretized into 25
load increments, resulting in a time-step of 0.6 minutes and
incremental axial strain of 0.06%. We do not consider con-
vergence with respect to time-step refinement and take the
time-step as a constant. The error analysis consists of calcu-
lating the difference between the numerically derived axial
effective stress at the end of the simulation and analytical
solutions:

error =
√√√√∫

Ω

(
σ′

a −σ′
a,ann

)2 dΩ∫
Ω

(
σ′

a,ann
)2 dΩ

(21)

where σ′
a is the axial effective stress resulting from numer-

ical simulation and σ′
a,ann is an analytical solution. Effec-

tive stresses in the numerical solution are approximated by
piecewise constants of order zero. We consider two simula-
tion cases for error analysis: (1) undrained triaxial test with-
out plasticity to explore the poromechancial coupling and
(2) drained triaxial test with plasticity to explore the elasto-
plastic coupling. The analytical solutions for axial effective

stress to the two simulation cases are (compression posi-
tive):

σ′
a,ann =


1.5×10−2E

1−(1−2ν) αB
3

(
1− B

3

)
case 1

σ′
r

(
1±1 2Mφ

3

)
±1cφ

1±2
Mφ

3

case 2

compression : ±1 =+ ±2 =−
extension : ±1 =− ±2 =+

(22)

where E is the Young’s modulus, 1.5× 10−2 is the imposed
axial strain, ν is the Poisson’s ratio, B is Skempton’s pore
pressure coefficient, and σ′

r is the effective radial stress. We
simulate four mesh refinement levels with mesh element
size varying between 2.5 and 10 mm (equal to 0.2 and 0.8
times the modeling domain radius). The three-dimensional
unstructured mesh is generated with the open source soft-
ware Gmsh [Geuzaine and Remacle, 2009].
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Figure 2. Convergence study with respect to mesh
size. (a) Error against analytical solutions given by Eqs.
21 and 22. We use a mesh size of 5 mm (1,390 ele-
ments) in section 4. (b) CPU run time for increasing
levels of mesh refinement.

Results show that the numerical solutions reach errors in
the range of 10−2 to 10−3 for the given modeling cases and
mesh size, providing confidence in the numerical formula-
tion and solution scheme (Figure 2a). The error is roughly
the same for the two modeling cases showing the ability
of numerical solutions to accurately model poromechan-
ical and elastoplastic couplings. The simulations exhibit a
O

(
∆h2

)
convergence, typical for implicit Euler methods.

Furthermore, the monolithic solution scheme and selected
mesh size results in total CPU time of less than 7.5 minutes
with the simulations solved on a single processor (Figure
2b). The CPU time is mostly the same whether plasticity
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is active or not because the required number of Newton
iterations per time step is the same (∼ 3 − 4). We utilize a
mesh element size of 5×10−3 - shown graphically on Figure
2a - in the following triaxial simulations to balance CPU run
time and solution error. Our chosen mesh size reaches an
error of 3×10−3 with CPU run time of 3 minutes.

4.2. Displacement Controlled Tests
Under drained triaxial compression, perfectly plastic

materials reach a limiting axial stress at yield and remain
at that state of stress throughout additional loading. The
analytical solution for the limiting axial stress in terms of
Drucker-Prager yield criterion is given by case 2 in Eq. 22
and it is equal to 35 MPa, resulting in limiting deviatoric
stress of 25 MPa with radial effective stress of 10 MPa (Figure
3a). Volumetric plastic dilation (ψ > 0) does not affect the
limiting deviatoric stress nor the effective stress path but
causes changes in bulk volume during rock yield (Figure
3b). Pore pressure remains constant in the drained test
(k = 10−13m2) despite changes in rock pore volume for
ψ > 0 and results in a similar deviatoric stress path as the
case without dilation (Figure 3c). Notice that the drained
deviatoric loading follows a conventional triaxial stress path
of q = 3p ′ while in the elastic region and remains on the
yield surface at yield.

The displacement controlled undrained triaxial test can
be split into two parts: (1) elastic deformation causing an
increase in pore pressure - similar to the theory of one di-
mensional consolidation [Cheng, 2016] - and (2) plastic di-
lation during yield causing a decrease in pore pressure and,
thus, an increase in radial effective stress. As a result, there
is no limiting axial stress as radial effective stress contin-
ues to increase with additional deviatoric strain (Figure 4a).
For example, the numerical solution predicts an axial stress
of > 35 MPa at an axial strain of 1.5 % for a dilation angle
of ψ = 7.5◦ and k = 10−20m2. Furthermore, pore pressure
initially increases during elastic consolidation to ∼ 4 MPa
but decreases quickly once plastic dilation increase the pore
volume (Figure 4b). Note that the pore pressure eventually
becomes negative at high enough deviatoric strain, a non-
physical event that could be prevented in the real experi-
ment by water cavitation or initial pore pressure larger than
the change caused by plastic dilation, but displays the ability
of the numerical code to simulate such coupled poroelastic
behavior.

The undrained deviatoric stress path can also be split into
two parts: (1) elastic deviatoric loading following q > 3p ′
(different than the drained stress path due to pore pressure
coupling and near isochoric response) and (2) increase
of both q and p ′ exactly following the yield surface such
that q = Mφp ′ (Figure 4c). Initially, pore pressure increase
causes pure deviatoric loading and near constant volume
deformation but reverses the trend once the rock yields and
dilates. Moreover, the theoretical slope of the elastic stress
path (prior to yield) is equal to q/p ′ = 3/(1−B) with two
end-member cases: (1) q/p ′ = ∞ for K << K f (water satu-
rated soils) and (2) q/p ′ = 3 for K >> K f (gas saturated rocks
and stiff basement rocks). The slope of the elastic stress
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Figure 3. Numerical simulation of a displacement
controlled drained triaxial compression test. (a) De-
viatoric stress vs deviatoric strain for tests with dila-
tion and without dilation (both tests follow same stress
path). (b) Bulk volume remains unchanged at yield for
ψ = 0◦, yet dilates for ψ > 0. (c) Stress path in p′, q
space. Both tests follow the same stress path as pore
pressure is unaffected by dilation.

path in the undrained simulation is q/p ′ ≈ 11.8 (Figure
4c), which closely follows the theoretical value of 3/(1−B)
and provides confidence in the numerical code to simulate
undrained response.

4.3. Temperature Controlled Tests
This subsection verifies the numerical solution against a

temperature controlled triaxial test with constant radial to-
tal stress of 10 MPa (i.e., confinement), fixed axial displace-
ment, and incrementally applied thermal loads on either flat
end of the rock sample (thermal insulation boundary condi-
tion in the radial direction). Here, we consider both drained
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Figure 4. Numerical simulation of a displacement
controlled undrained triaxial compression test. (a, b)
Rock dilation at yield reduces pore pressure (and, thus,
effective radial stress increases), making the material
stronger because of effective stress-dependent fric-
tion. (c) Stress path in p′, q space for the case with and
without dilation.

and undrained tests enforced by changing permeability val-
ues (Table 2). The thermal diffusivity is set to 10−2 m2/s, or-
ders of magnitude larger than typical geomaterials, to simu-
late instantaneous heating/cooling of the entire sample.

Stress paths for the drained temperature controlled test
are shown in Figure 5a, with thermal compression test be-
ing identical to mechanical compression test (see Figure 5a-
compression and Figure 3c). This test is intended to simu-
late drained thermo-mechanical behavior, in which the in-
fluence of different thermal expansion coefficients between
solid matrix and pore fluid is inconsequential. While in the
elastic regime, thermal loading follows q = 3p ′ for the case of
heating and follows q =−3p ′ for the case of cooling. As pore
pressure remains constant, the analytical limiting deviatoric

stress in compression (heating) is q = 25.0 MPa and in exten-
sion (cooling) is q = 10.714 MPa with σ′

r > σ′
a . The numeri-

cal solution predicts q = 24.99 MPa (heating) and q = 10.704
MPa (cooling), a relative error of 4× 10−4 and 9× 10−4, re-
spectively (Figure 5a). The error is computed in a similar way
as Eq. 21 but with a volume averaged deviatoric stress, i.e.,
q = 1

V

∫
Ω qdΩ.
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Figure 5. Numerical simulation of a temperature
controlled triaxial compression (+∆T ) and extension
(-∆T ) test. The confining pressure is constant and
the axial displacements at end faces are fixed. (a)
Drained test with no change in pore pressure and
(b) undrained test with pore pressure decrease due
to contrasting thermal expansion coefficients between
solid and fluid.

The undrained temperature controlled test is intended
to highlight the implications of different thermal expansion
coefficients between fluid and the solid matrix on effective
stress. This situation arises in cooling of enhanced geother-
mal systems reservoirs, e.g., [Salimzadeh et al., 2018], and
in undrained caprock response to geologic carbon storage
reservoirs where injection of CO2 cools the reservoir within
and around the plume, e.g., [Thompson et al., 2021]. The
undrained thermo-poroelastic stress path is shown in Fig-
ure 5b. Notice that the state of stress remains in the elas-
tic regime despite lowering the temperature by 250 ◦C. This
occurs due to significant decrease in pore pressure as the
expected behavior is: ∆p = Mβe∆T [Cheng, 2016]. As a re-
sult, the stress path follows q = 0.7p ′ which is not enough
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to intersect the shear yield line (0.7 < Mφ). This simulation
verifies that the numerical solution is able to simulate full
thermo-poroelastic coupling including undrained response
to cooling.

5. Example Full-scale Simulations
This section provides example simulations of (1) a closed-
loop geothermal system with multiple horizontal wellbores
that impose partially undrained thermal cooling and (2) a
compartmentalized high-permeability reservoir subject to
fluid injection that mostly exhibits drained response. Both
simulations are modeled in three-dimensions with local
mesh refinement near the wellbores (mesh size of 10 m
for the closed-loop wellbore and mesh size of 4 m for the
compartmentalized reservoir). Total degrees of freedom are
4.02× 106 for the closed-loop model and 1.39× 106 for the
compartmentalized reservoir model. The full-scale simu-
lations are intended to (1) provide an application of the
numerical code at field scale and (2) compare the numeri-
cal results to analytical results for further verification. The
simulations were not subject to a mesh convergence study
as numerical results compare well to expected theoretical
results. In subsection 5.1, we present results for 30-year
heat drainage from a basement rock with low permeabil-
ity (near undrained response) and in subsection 5.2 we
present results for 6-months of a constant rate injector with
small temperature difference between injection fluid and
reservoir.

5.1. Closed-loop geothermal wellbores
5.1.1. Numerical Model Setup

Closed-loop geothermal systems are primarily used
for direct use applications such as heating and cooling
with more than 84% of geothermal heat pumps utilizing
a closed-loop system in the US [Geothermal Technologies
Office, 2019]. However, recent interest has focused on deep
reservoirs with the potential for electrical power produc-
tion, e.g., [Beckers et al., 2022, Yuan et al., 2023]. Deep
closed-loop systems do not require reservoir stimulation
nor permeable fracture networks, and hence avoid early
thermal breakthrough caused by thermal short-circuiting
[Gee et al., 2021, McLean and Espinoza, 2023]. Rather, low
temperature working fluids circulate within a closed well-
bore or multiple wellbores, with no exchange between rock
pore fluid and working fluid, and extract heat from the
surrounding rock [Livescu et al., 2023].

Here, we simulate a closed-loop geothermal system com-
posed of 5 horizontal wellbores that are 1 km in length and
spaced 100 m apart, similar to planned projects [Eavor,
2022] (Figure 6). Initial conditions are: (1) geothermal gra-
dient of 30 ◦C/km, (2) hydrostatic pore pressure, (3) total
vertical stress gradient of 23 MPa/km, (4) total maximum
horizontal stress gradient of 19 MPa/km, and (5) total min-
imum horizontal stress gradient of 16 MPa/km. Normal
faulting stress regime near critically stressed conditions are
most favorable for yield driven by lateral thermal destressing
[McLean and Espinoza, 2023]. The basement rock reservoir

is located at a depth of 5 km with properties listed in Table 3.
The compressive strength and deformation modulus values
assumes a large-scale volume average rather than the rock
matrix strength, e.g., included effect of a sparse preexisting
fracture distribution on overall rock mass strength. Total
vertical stress at a depth of 5 km is applied on the top of
the model, tectonic displacements are prescribed on north
and east boundaries, and roller condition is prescribed
everywhere else to obtain the initial state of stress. Other
boundary conditions consist of constant hydrostatic pore
pressure and thermal insulation along the outer boundaries
and no flow along the top and base. The lateral wellbore
temperature distribution follows analytical solutions given
by Ramey Jr [1962] and will not be repeated here. The tem-
perature distribution is a Dirichlet boundary condition to
simulate working fluid extracting heat from the reservoir
initially at 175 ◦C at the depth of wellbores. Discretization
details for the wellbores are provided in Appendix B.

Table 3. Poro-elastoplastic properties for deep
closed-loop geothermal simulation.

Property Value Unit

Bulk modulus: K 37 GPa
Shear modulus: G 21 GPa
Biot modulus: M 94 GPa
Biot coefficient: α 0.56 -
Uniaxial comp. strength: UC S 69.0 MPa
Friction angle: φ 30 ◦
Dilation angle: ψ 7.5 ◦
Permeability: k 10−20 m2

Porosity: n 0.009 -
Solid expansion: βd 6×10−5 1/◦C
Fluid mass expansion: βe 3.5×10−5 1/◦C
Thermal diffusivity: αT 1.4×10−6 m2/s

5.1.2. Results
Results show that the numerical solution predicts tem-

perature, pore pressure, and stress changes due to cooling
- without fluid exchange with wellbores -, as expected for
the given reservoir properties and boundary conditions
(Figure 7). Temperature decreases everywhere along the
length of the wellbores by 100 ◦C and by ∼ 30 ◦C between
wellbores after 30-years, mostly limited by small rock ther-
mal diffusivity. Temperature remains unchanged far away
from wellbores throughout the simulation. Continuous
geothermal reservoir cooling over several decades cases
pore pressure to decrease by 2.5 MPa due to (1) contrasting
thermal expansion coefficients between rock matrix and
pore fluid and (2) low rock permeability. This is illustrated in
the second column of Figure 7, which is also comparable to
the undrained temperature controlled triaxial verification
test (Figure 5b). This response is not fully undrained as
the required permeability for thermal-hydraulic undrained
response is on the order of 10−23 m2 [Salimzadeh et al.,
2018].
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Figure 6. Closed-loop geothermal system with five horizontal wells: numerical modeling domain and mesh. The
image shows the pore pressure field with partially undrained response to cooling at the end of the simulation. Points
A and B are shown here for stress path analysis - Point A is adjacent to the wellbore and Point B is between wellbores.

Figure 7. Temperature, pore pressure, and effective stress changes for 30-year heat drainage (horizontal cross-section
passing through the depth of the wellbores). Here, changes ∆(·) refer to the current value with respect to initial condi-
tions. Cooling of the geothermal reservoir leads to (1) partially undrained response, (2) redistribution of total vertical
stress around wellbores, and (3) horizontal effective stress relaxation.

The mechanical response of a deep closed-loop geother-
mal system is complex because (1) the partially undrained

behavior alters effective stress throughout the 30-year sim-
ulation, (2) thermal unloading causes total vertical stress
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to increase between wellbores - an effect of stress redistri-
bution similar to arching in tunnels - and (3) rock shear
failure limits the decrease of horizontal effective stresses.
Initial cooling everywhere along the length of the wellbore
causes total vertical stress to decrease within the cooled vol-
ume, but redistribution of overburden stress concentrates
between wellbores, increasing deviatoric stress. As thermal
drawdown propagates further away from the wellbores, the
induced compressive vertical stress decreases but always
stays in compression. For example, vertical effective stress
initially increases 30 MPa in compression but tends to ∼
5 MPa in compression after several years of heat drainage.
Furthermore, horizontal effective stresses decrease every-
where near the wellbores as a result of laterally constrained
rock contraction. However, the decrease of horizontal ef-
fective stresses is limited by rock yield in regions that reach
shear failure.

Although temperature does not change far away from the
wellbores, effective stresses and pore pressure do (Figure 8).
Above and below the cooled rock volume, horizontal effec-
tive stresses increases 5 MPa in compression - also a result
of compressive stress redistribution around the wellbores.
Hence, normal faults are more likely to reactivate within the
cooled rock volume but reverse faults are more likely to re-
activate outside of the cooled volume as predicted by ana-
lytical solutions [Segall and Fitzgerald, 1998]. These results
in Figure 8 illustrate the ability of the numerical solution to
solve and predict coupled fields that operate under different
spatial extents and time scales, e.g., temperature only de-
creases close to the wellbores yet induces deformation and
pressure changes far away.

Lastly, the numerical solution shows that reservoir cool-
ing in critically stressed deep closed-loop geothermal sys-
tems can drive the state of stress to shear failure (Figure 9).
Although more complex than the simple triaxial verification
tests, the stress path to reach shear failure follows expecta-
tions for the given stress and pore pressure changes. Loca-
tions adjacent to the wellbores (point A on Figure 9a) yield
within 10 years of heat drainage while locations between
wellbores (point B on Figure 9a) stay in the elastic regime for
more than 30-years because the initial state of stress favors
shear failure by nearly isotropic unloading. The stress path
adjacent to the wells initially follows a deviatoric loading
path as (1) horizontal effective stresses decrease much more
than vertical effective stress and (2) pore pressure decreases,
keeping mean stress nearly constant. However, the stress
path changes in later times and follows an isotropic unload-
ing path where all three principal effective stresses decrease
simultaneously. By the end of 30-year heat drainage, the
volume of rock within ∼ 30 m of the wellbores is near yield
conditions (Figure 9b). This illustrates that the elastoplastic
model (specifically the closed-form solution to the elasto-
plastic return map - Eq. 10) can accurately simulate rock
yield under combined thermal, hydraulic, and mechanical
loading.
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Figure 8. Effective stress and pore pressure profiles
after 30-years of heat drainage. Solid and dashed lines
indicate a vertical profile passing through point A and
point B, respectively.

5.2. Fluid Injection in Compartmentalized
Reservoir

5.2.1. Numerical Model Setup
This section provides an example numerical simulation

of a compartmentalized reservoir subject to non-isothermal
fluid injection, e.g., enhanced oil recovery with water flood-
ing, salt-water disposal, and CO2 geological storage. For
simplicity, we neglect multiphase fluid flow and multiphase
poroelasticity in the formulation but could be added with
(1) additional equations for phase mass balance and (2) up-
dated constitutive equations for fluid compressibility, Biot
modulus, Cauchy stress, capillary pressure, etc. [Lewis and
Schrefler, 1998]. We simulate a constant rate injector well
for 6-months in a 50 m thick high-permeability reservoir
that is bounded by 50 m thick low permeability caprock and
baserock (Figure 10). Initial conditions are: (1) geothermal
gradient of 30 ◦C/km, (2) hydrostatic pore pressure, and (3)
total vertical stress gradient of 23 MPa/km together with
total (isotropic) horizontal stress gradient of 15.5 MPa/km.

The injector is perforated the entire 50 m height of the
reservoir, which is at 2 km depth. Total vertical stress at a
depth of 2 km is applied on the top of the model, tectonic
displacements are prescribed on north and east bound-
aries, and roller condition is prescribed everywhere else to
obtain the initial state of stress. Non-isothermal injection
is applied through the Dirac delta function, restricting the
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Figure 9. (a) Stress paths through 30-years of heat
drainage. Locations adjacent to the wellbores (point
A) reach shear failure where thermal unloading is most
pronounced but locations between wellbores (point B)
stay in the elastic region for more than 30-years. (b)
Shear reactivated reservoir volume shown for a hor-
izontal cross-section at the depth of the lateral well-
bores.

source term to the degrees of freedom associated with the
interior well nodes (refer to f p and f T in Eqs. 18 and 20).
A total volume of 28,617 m3 is injected at a temperature
of 50 ◦C over the 6-month simulation in the compart-
mentalized reservoir - injection rate of 1,000 bbl per day -
(Figure 10). The large injection rate was chosen such that (1)
pore pressure increases enough to cause yield everywhere
in the reservoir and (2) thermal advection is significantly
larger than thermal diffusion. Hence, this model verifies
the streamline upwind Petrov-Galerkin method for heat
transport. Reservoir and caprock properties are shown in

Table 4 with the same elastic constants for both layers. Note
that the high Poisson’s ratio has two effects: (1) results in
initially large horizontal effective stress -without tectonic
stresses- due to σ′

h = ν
1−νσ

′
v and (2) ensures injection in-

duced stress changes cause rock yield everywhere in the
reservoir within the 6-month injection period, i.e., ν = 0.3
is a choice informed by the analytical solution (Eq. 22) to
maximize isotropic component of the stress path such that
|∆q/∆p ′| ⩽ Mφ, causing yield with sufficient pore pressure
increase.

Table 4. Poro-elastoplastic properties for fluid injec-
tion simulation.

Property Value Unit

Bulk modulus: K 8.3 GPa
Shear modulus: G 3.8 GPa
Biot modulus: M 9.2 GPa
Biot coefficient: α 0.78 -
Uniaxial comp. strength: UC S 5.0 MPa
Friction angle: φ 30 ◦
Dilation angle: ψ 7.5 ◦
Permeability: k 1×10−14, 5×10−19 m2

Porosity: n 0.02 -
Solid expansion βd : 3×10−5 1/◦C
Fluid mass expansion βe : 5.7×10−5 1/◦C
Thermal diffusivity αT : 7.5×10−7 m2/s

5.2.2. Results
The results show that the numerical solution can accu-

rately simulate rock yield driven by pore pressure increase
alone and by pore pressure increase combined with temper-
ature decrease. Locations near the injector (within the ther-
mal front) reach shear failure quickly because the mechani-
cal response is intensified by temperature contrast between
injection fluid and reservoir (Figure 11a). This occurs within
25 m of the injector by the end of the injection period. As-
suming total vertical stress remains constant, the 1D-strain
analytical solution for a poroelastic stress path due to pore
pressure increase is:

∆q =
(

1

2η
− 2

3

)−1

∆p ′ ≈ 0.63∆p ′ (23)

where η = α (1−2ν)/2(1−ν) = 0.22 is the poroelastic stress
coefficient [Cheng, 2016]. Any deviation from this solution
arises from additional thermal stresses within the cooled re-
gion and 3D geometrical effects. As expected, mean effective
stress exhibits more pronounced decreases near the injector
(point A) and the stress path mostly follows ∆q = 0.55∆p ′,
up to 12.5% away from the analytical solution. After the rock
yields near the injector, all three principal effective stresses
continue to decrease with continued injection and results in
a stress path directly following the yield surface q = Mφp ′
(Figure 11a at time equal to 4 months). Furthermore, loca-
tions outside the thermal front (point B) closely follow the
analytical stress path of ∆q = 0.63∆p ′ because temperature
decrease near the injector does not change much the total
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Figure 10. Numerical modeling domain and mesh for fluid injection simulation. Points A and B are shown here for
stress path analysis - point A is within the thermal front (thermo-poroelastic response) and point B is ahead of the
thermal front (poroelastic response).

vertical stress far away (Figure 11b). These locations further
away from the injector stay in the elastic region for about
1.3 times as long as those locations within the thermal front,
e.g., 5.5 months compared to 4.25 months.
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Figure 11. Stress paths for compartmentalized reser-
voir subject to fluid injection. (a) Effective stress
changes are larger within the thermal front and reach
shear failure quickly. (b) Shear failure is delayed out-
side the thermal front where no temperature change
occurs.

The difference in stress changes between locations within
and ahead of the thermal front is large, particularly for ver-
tical effective stress (Figure 12). Total vertical stress remains

nearly constant far away from the injector but decreases
considerably within the thermal front, similar to vertical
stress redistribution around cooled wellbores in section
5.1. Yet, the difference in horizontal effective stress change
between points A and B is smaller because rock cooling near
the injector causes forced contraction everywhere in the
reservoir (a result of adjacent rock causing a virtual lateral
constraint). Furthermore, rock shear failure limits the de-
crease in all effective stresses which otherwise would go far
beyond the yield surface - even to tension - if elastoplasticity
was not included. Our results are in agreement with those
of [Im et al., 2021] which conclude that assuming a purely
elastic reservoir subject to non-isothermal fluid injection
can result in unreasonable results because calculated tensile
stress may become much larger than the tensile strength of
rocks and the state of stress may go far beyond the shear
yield surface.

6. Conclusion
The numerical modeling and understanding of coupled
THM processes in complex 3D domains is of increasing
importance in a wide range of subsurface activities. Pre-
set open source codes and commercial codes limit the
end user’s ability to change many aspects of the software
package and some are limited to purely elastic reservoir
response. Most existing codes do not formulate mechan-
ically induced porosity changes based on the theory of
thermo-poroelastoplasticity, neglecting possible undrained
response to reservoir cooling. This work provides a freely
available and end user adaptable thermo-poroelastoplastic
numerical code and solutions for subsurface applications.
The objectives of the numerical model are to: (1) incorporate
stress, pressure, and porosity constitutive behavior based on
the theory of thermo-poroelasticity, (2) extend traditional
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Figure 12. Effective stress and pore pressure profiles
after 6-months of fluid injection. Solid and dashed
lines indicate a vertical profile passing through the
thermal front and outside the thermal front, respec-
tively. Differences between solid and dashed lines rep-
resent thermal stresses. The difference in pressure for
points A and B is negligible as permeability is large and
pressure changes propagate quickly.

THM elastic coupling to include effects of rock mass inelas-
ticity, (3) utilize a locally mass conserving finite element
discretization for mass balance, (4) preserve numerical
stability in the presence of advection dominated energy
transport, and (5) utilize open source computing platforms
such that paid licensing barriers are prevented. The nu-
merical solution was formulated in the variational form
and verified against several conventional triaxial tests with
three-dimensional simulations compared against analytical
solutions. We provided two reservoir scale example simula-
tions of (1) a deep closed-loop geothermal reservoir and (2)
a compartmentalized reservoir subject to non-isothermal
fluid injection. Our results show that the numerical solution
accurately predicts coupled temperature, pore pressure,
and stress changes for the given reservoir properties and
boundary conditions. Lastly, the results show that accurate
prediction of THM coupled processes in the subsurface may
need to include plastic strains because assuming a purely
elastic response may yield unreasonable results for large
stress changes.

Conflicts of Interest
The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have
appeared to influence the work reported in this article .The
complete review history is available online.

Acknowledgements
This work was supported by the Hildebrand Initiatives
program at the Hildebrand Department of Petroleum
and Geosystems Engineering at The University of Texas
at Austin. Freely available software used in this work in-
clude: Fenicsx (https://fenicsproject.org/), ParaView
(https://www.paraview.org/), Gmsh (https://gmsh.
info/), Overleaf LaTex platform (https://www.overleaf.
com/), and Anaconda (https://www.anaconda.com/).

Data Availability
The numerical code has been made freely available at
the following GitHub repository: https://github.com/
Matt-L-McLean/poromechanics

Appendix A. Strain Softening Model
Elastic-perfectly plastic models are unable to capture
changes of rock strength after the onset of yield. However,
it is well known that rocks usually experience a decrease in
shear strength at the onset of yield unless confining pressure
is sufficiently large to cause continuous yield over large de-
viatoric strains with no decrease in shear strength [Franklin,
1971, Schwartz, 1964]. Moreover, reactivation of preexist-
ing fractures distributed within a rock mass may smooth
the asperities at the fracture face and, hence, reduce the
bulk shear strength of the rock mass [Patton, 1966]. Shear
strength degradation from peak to residual values - after the
onset of yield - has been documented in small scale labo-
ratory tests and observed in large scale field applications of
rock masses [Hoek and Brown, 1997, Read and Hegemier,
1984]. In this section, we formulate and provide example
simulations of a strain softening material that more accu-
rately describes the constitutive behavior of either (1) intact
rocks at low confining pressure or (2) rock masses with
preexisting planes of weakness - without explicitly mod-
eling those planes of weakness. This method is preferable
over modeling discrete fracture plasticity (refer to Garipov
and Hui [2019]) for densely fractured media that may be
impractical to mesh and model with contact mechanics.
Furthermore, this method is a simple extension from the
perfectly plastic model in section 2.3, utilizing a similar yield
function and plastic potential but with variation in the size
of the yield surface.

A.1. Changes to the Elastoplastic Model
Three changes are required to extend the perfectly plas-

tic model to strain softening behavior: inclusion of (1) mo-
bilized friction angle η∗, (2) mobilized plastic dilatancy, and
(3) softening modulus H in the plastic multiplier to increase
plastic strain magnitude. The mobilized friction parameter
η∗ - takes the place of Mφ in section 2.3 - is assumed to be a
nonlinear function of accumulated plastic shear strain ε

p
q =( 2

3

(
dev(εp )i j dev(εp )i j

))1/2
and bounded between a peakη∗p

and residual η∗r value [Potts et al., 2001]:

η∗ = η∗p −
(
η∗p −η∗r

)[
1−exp

(
−aεp

q

)]
(24)
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where a is a parameter that controls how quickly rock
strength decreases, e.g., a =∞ corresponds to brittle failure
while a = 0 is perfectly plastic. The exponential model is
chosen for ease of numerical implementation over a linear
model that takes the form of a piecewise function with
possible discontinuous derivatives. We assume that cohe-
sive strength remains constant, but it may also vary with
accumulated plastic shear strain. Moreover, the dilation
angle - Mψ in section 2.3 - is replaced with a mobilized
dilation angle (equal to η∗ − η∗r ) which provides dilation
while yielding and constant volume deformation once the
residual strength has been reached (similar to critical state
plastic dilatancy). Lastly, the plastic multiplier dλ includes a
softening modulus H and is equal to:

dλ=
〈 f

(
σ′,e

i j

)
〉+

3G +K
(
η∗−η∗r

)
η∗+H

(25)

with H =− ∂ f
∂η∗

dη∗

dε
p
q

∂g
∂q =−p ′a

(
η∗p −η∗r

)
exp

(
−aεp

q

)
< 0 for de-

creasing rock strength. The closed form solution to the plas-

tic multiplier results from the analytical derivative dη∗

dε
p
q

. Note

that H decreases to zero for sufficiently large values of plas-
tic shear strain and the strength weakening model reduces
to an elastic-perfectly plastic model without plastic dilation,
i.e., η∗ = η∗r and H = 0.

A.2. Undrained Triaxial Simulation
We simulate a displacement controlled undrained triaxial

test with the properties given in Table 2, η∗p = 1.2 (friction co-
efficient of 0.577), η∗r = 1.0 (friction coefficient of 0.467), and
the weakening parameter a = 100. The total imposed axial
strain is 5% such that large amounts of plastic shear strain
are accumulated and the mobilized friction parameter can
decrease close to the residual value. The axial loading rate
is 0.1% per minute and time-step is 36 seconds, the same as
in section 4, which results in a total simulation time of 50
minutes. The load rate is consistent with section 4 to ensure
undrained response, i.e., characteristic pore pressure diffu-
sion time much less than the time-step.

The simulation results show that the numerical simula-
tion predicts stress and pore pressure changes as expected
for the given boundary conditions and constitutive law (Fig-
ure 13). The mobilized friction parameter controls the size
of the yield surface and decreases non-linearly with increas-
ing deviatoric strain (Figure 13a). Pore pressure increases
during elastic compression to ∼ 4 MPa then decreases with
additional axial displacement. Pore pressure decrease after
yield approaches a constant value (∼ 0 MPa) as the mobi-
lized dilation angle (equal to η∗ − η∗r ) becomes zero and,
hence, reaches critical state (Figure 13b). Volumetric strain
takes a similar trend to pore pressure but it is not shown
here. Lastly, the undrained effective stress path with shear
strength degradation is shown on Figure 13c. The stress path
after the onset of yield is bounded by the peak and residual
shear strength lines, as expected. Our simulation results are
in agreement with analytical solutions of strain softening
undrained stress paths from Wood [2004].
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Figure 13. Numerical simulation of an undrained tri-
axial compression with strain softening behavior. (a)
The mobilized friction parameter decreases from peak
to residual value. (b) Dilation at yield reduces pore
pressure but approaches constant volume deforma-
tion with η∗ ≈ η∗r . (c) Effective stress path in p′, q
space.

Appendix B. Discretization of Lateral
Wellbores
Poromechanical simulation of a deep closed-loop geother-
mal system requires discretization of the lateral wellbores.
Explicitly modeling the wellbore as a cylinder that is taken
out of the modeling domain is impractical to mesh for field
scale simulations as the aspect ratio between wellbore ra-
dius and reservoir length can be > 104 and may cause (1) is-
sues in mesh creation and (2) large increase in total degrees
of freedom. This approach is similar to that of modeling a
circular cavity in a rock mass with stress amplification at the
cavity wall, e.g., wellbore stability analysis. We, therefore,
model the wellbore with a one-dimensional line embed-
ded in a three-dimensional reservoir with the temperature
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degrees of freedom (linear shape function) coinciding with
the line (Figure 14). Stress amplification in the near well-
bore region does not occur with this method. We utilize a
10 m cell diameter mesh size for those elements adjacent
to the interior line. The wellbore temperature - lower than
the surrounding rock temperature - is a Dirichlet boundary
condition imposed on the line. Note that we are mainly
interested in the long-term poromechanical reservoir re-
sponse to heat drainage rather than accurately predicting
fluid outlet temperature from a closed-loop geothermal
system. Hence, we do not model wellbore mass balance nor
energy balance but utilize analytical solutions for wellbore
temperature that varies in time and along the lateral length,
e.g., Ramey Jr [1962].

Figure 14. Spatial discretization of the later well-
bores in a deep closed-loop geothermal system.
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