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Abstract. Instabilities and failure in ductile non associated materials
have been widely investigated during last decades especially in the
case of geomaterials. It has been shown experimentally that collapse of
some specimens can occur strictly within the ultimate plasticity limit,
which is experimentally characterized by the maximum shear stress in
a drained triaxial test. From a theoretical point of view such instabil-
ity problems are well described using the so called second order work
criterion derived from the Hill’s stability analysis (Hill [1958]). Hence a
question arises as to the experimental characterization of the ultimate
plasticity limit with respect to the choice of stress paths. After a few
reminders on Hill’s theory, we prove in a general framework that the
drained triaxial paths allow to determine with certainty this ultimate
plasticity limit without any risk of preliminary bifurcation whatever the
elasto-plastic material considered. We conclude that the plasticity limit
is only slightly sensitive to variation of the internal state of the material,
which can be described by different micromechanical quantities such as
the void ratio and the fabric tensor. Furthermore, we define the limit of
the bifurcation domain as the surface drawn in the 6-dimensional stress
space that delimits the unconditionally stable space from the one where
instabilities and failures can occur within the plasticity limit. However,
we show that this latter limit is itself very sensitive to the evolution of
the internal state of the soil sample.
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Figure 1. Sketch of the responses of a normally con-
solidated and an over consolidated soils samples ac-
cording to an undrained triaxial compression.

1. Introduction
The behavior of geomaterials is complex, and it is now well
known that loss of stability and failures can arise strictly
within their plasticity limit (Darve and Vardoulakis [2004],
Lade [1992], Nova [1991]). From a theoretical point of view,
the plasticity limit is the surface plotted in the 6D stress
space which bounds the admissible stress states of the
material. For geomaterials, this limit is generally charac-
terized with triaxial tests or direct shear tests. For soils
with a low permeability, undrained triaxial tests are likely
to be performed. On this particular stress path, normally
consolidated materials exhibit a peak in the

(
q −p ′) plane

before reaching the plasticity limit obtained in drained con-
ditions. In the rest of the paper we consider the axis 1 to
be the major principal stress and the axis 3 to be the minor
principal stress. We denote in a standard way q = σ1 −σ3

and p = tr(σ)/3. It has been shown that from this peak the
material is in an unstable state (Darve and Chau [1987],
Darve and Vardoulakis [2004], Lade [1992], Nova [1991,
1994, 2004]). Indeed, we will see in section 3 that a collapse
can be triggered if the test is stress driven. The Figure 1
shows a sketch of the responses of a soil sample according
to an undrained triaxial test in an over consolidated state
and in a normally consolidated state. Based on this simple
fact the following question arise:

Q How to characterize properly the ultimate plasticity
limit from an experimental point of view? In other
words, how to define a proper loading path where
the failure is reached on the plasticity limit without
a previous loss of stability?

In order to answer this question, we will remain within a
phenomenological framework in order to provide practical
solutions that are relatively simple for an experimenter, even
though great advances have been made in micromechanics
over the last decade, either from a theoretical point of view
using DEM simulation (Zhao et al. [2022], Farahnak et al.
[2024], Wang et al. [2024]), or with new observations thanks
to the development of tomographic imaging (Pinzon et al.

[2023], Cui et al. [2025]).
We first recall some general properties of rate independent
materials and qualitatively describe the Octolinear model of
Darve et al. [1995] in section 2 which is used in this work
for illustrative purposes only. It should be emphasized that
the approach described in this article is very general and not
specific to any particular material. The only assumption is
that the material is rate independant. For this approach to
be useful, the material must also be non-associated, oth-
erwise the material will remain unconditionally stable up
to the plastic limit. Next, we recall the current knowledge
on stability analysis of geomaterials using the second order
work criterion in section 3. In section 4 we provide an an-
swer to the main question posed above. Before closing the
discussion of this paper, we provide in section 5 a descrip-
tion of the shape of the instability cones lying on the plastic-
ity limit. In fact, unstable loading directions for stress states
lying on the plasticity limit can be derived from an analytical
manner and was never investigated before the present work.
As recalled in the section 3, an instability cone is the set of
loading directions that leads the material into an unstable
state even inside the plasticity limit. Finally, we propose a
discussion about the sensitivity of the limit of the bifurca-
tion domain with the evolution of the internal state of the
material. The bifurcation domain limit is the surface drawn
in the 6D loading space that delimits the space where insta-
bility cones exist.

2. Short description of the
elasto-plastic model used for the
illustrations of the paper

This model is not based on the classical assumption of de-
composition of the strain in an elastic plus a plastic part. It
is instead, built from the general expression of rate indepen-
dent models:

dεα = Nαβ

(
uγ

)
dσβ | uγ =

dσγ
∥dσ∥ (1)

α,β,γ are indices ∈ [1...6] when writing second order tensors
σ and ε under a six columns vector form. The Einstein con-
vention is used for repeated indices like β. From a general
point of view, the 6 functions Nαβdσβ respect the three
mathematical properties to properly describe rate indepen-
dent behaviors (Darve and Labanieh [1982], Darve et al.
[1995]):

(1) they are homogeneous function of first order:

∀λ ∈R+ Nαβ

(
λdσβ

)=λNαβdσβ (2)

This ensure that the response of the material is
independent of the rate of the solicitation.

(2) they are non linear since Nαβ depend on uγ =
dσγ/∥dσ∥. This ensures the non reversibility of the
response of the material

(3) they are anisotropic

Furthermore, the operator N depends on the previous load-
ing history through memory parameters h. A development
in series limited to the second order of N gives the general
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expression of incrementally non linear models of second or-
der:

dεα = N 1
αβdσβ+

1

∥dσ∥N 2
αβγdσβdσγ

with
(
α,β,γ= 1, ...,6

) (3)

Darve’s constitutive model is obtained with three more as-
sumptions :

• N is orhtotropic
• dσβdσγ = 0 for β ̸= γ
• Shear moduli are incrementally linear (their expres-

sion not used in the present paper is described in
Darve et al. [1995])

This leads to the incrementally non linear model of Darve
expressed in identical principal axes:

dε1

dε2

dε3

= 1

2

[
N++N−] 

dσ1

dσ2

dσ3

+ 1

2∥dσ∥
[
N+−N−] 

dσ2
1

dσ2
2

dσ2
3


(4)

with

N± =


1

E±
1

−ν1±
2

E±
2

−ν1±
3

E±
3

−ν2±
1

E±
1

1
E±

2
−ν2±

3
E±

3

−ν3±
1

E±
1

−ν3±
2

E±
2

1
E±

3

 (5)

Fonctions E+
i and ν

j+
i are defined on generalized triaxial

loading paths when dσi > 0 and dσ j = dσk = 0. Respec-

tively E−
i and ν j−

i are defined on generalized triaxial loading
paths when dσi < 0 and dσ j = dσk = 0. For dσi = 0, it
can be verified that the relation is continuous (Gudehus
[1979]). This latest model is not used in this document in
order to keep analytical developments in relation with the
illustrations. We can then remark that in one dimension,
this relation is incrementally piecewise linear (one modulus
for loading and another one for unloading):

dε= 1

2

(
1

E+ + 1

E−

)
dσ+ 1

2

(
1

E+ − 1

E−

)
|dσ| (6)

By extrapolation, Darve defined the octolinear relation
(eight tensorial zones) which is incrementally piecewise
linear. A tensorial zone is a part of the incremental loading
space where the constitutive model is linear. Using prior
notations, the octolinear model is written as follows:

dε1

dε2

dε3

= 1

2

[
N++N−] 

dσ1

dσ2

dσ3

+ 1

2

[
N+−N−] 

|dσ1|
|dσ2|
|dσ3|


(7)

In this expression, the eight tensorial zones are explicit, and
the relationship 7 is identical to the following eight linear re-
lations:

dε= (Ni )i=1,8 dσ (8)

with (Ni )i=1,8 the matrix N where indices (+) are affected to
the column

(
j
)

if dσ j > 0, and (−) if dσ j < 0 ( j ∈ {1; 2; 3}).

For exemple, if dσ1 > 0, dσ2 < 0, dσ3 > 0 we have:

N2 =


1

E+
1

−ν1−
2

E−
2

−ν1+
3

E+
3

−ν2+
1

E+
1

1
E−

2
− ν+3

E+
3

−ν3+
1

E+
1

−ν3−
2

E−
2

1
E+

3

 (9)

In the next sections, this relation 8 will be used for analytical
computations.
The empirical evolution of the various memory variables is
not presented in this work, but the model tends asymptot-
ically towards the Mohr-Coulomb failure criterion and de-
scribes a non associated flow rule. This model was mainly
developed to describe the large deformation and cyclic be-
haviour of sands, but it has also been used to successfully re-
produce the behaviour of clays (Darve and Labanieh [1982],
Darve et al. [1986]). We also highlight that it was developed
in a phenomelogical framework at the REV scale. The rules
governing the evolution of the various constitutive variables
depend on:

• the current void ratio
• the current stress state
• memory variables such as the values of the stress

tensor components during a cycle change.

Hence, the evolution of the sample microstructure is not
explicitly described by internal variables describing the
fabric tensor or the tensor of the contact force distributions
like it is done in some more recent models like Sanisand
(Dafalias and Manzari [2004] or P2Psand Cheng and De-
tournay [2021]). This is done phenomenologically through
the load history since a reference configuration, generally
assumed to be isotropic. We point out that the evolution of
the internal structure of a material is directly linked to its
loading history from a reference state. These two notions
are inseparable (Ouadfel and Rothenburg [2001]). It should
also be noted that in the latest version of 1995 used in this
work, the post-peak behaviour on a CD test and therefore
the critical state for dense sands or over-consolidated clays
is no longer described. Only asymptotic behaviour at the
ultimate plasticity limit is described. In fact, it was consid-
ered in those years that the post-peak behaviour was not
representative of the material because, in general, at least
one discontinuity in the form of a shear band had devel-
oped. As a result, the sample is no longer homogeneous.
Nevertheless, recent work analysing DEM results shows that
within a shear band the microstructure stabilises in a re-
markably stable configuration in the critical state (Zhu et al.
[2016]). This attempts to prove the relevance of this concept.
Moreover, it seems remarkable that it applies equally well to
clays and granular materials. Nevertheless, this work does
not focus on a detailed study of the behaviour of geoma-
terials, and despite the restrictions stated, the model used
is sufficient to illustrate the main ideas and results of this
work.
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3. Background on the stability of non
associated elasto-plastic materials

Failure in solid materials can be seen as a loss of the stability
of the equilibrium state. The material is known as stable if a
bounded load leads to a bounded response of the material,
while at a failure state this response can be unbounded (Lya-
punov [1907]). The most general criterion to describe such
phenomena in elasto-plastic materials has been proposed
by Hill [1958] and leads to the so called second order work
criterion under small strains assumption and for homoge-
neous problems.

∀ (dσ,dε) |dσ=M (dε) , w2 = dσ : dε> 0 ⇒ st abi l i t y
(10)

with M (dε) denoting the constitutive relationship linking
dσ to dε. The condition 10 provides a sufficient condition of
stability for the material. We will now analyse the condition.

w2 = 0 (11)

Using N the directional tangent operator (Gateaux [1913])
such that:

dε= N dσ (12)

we get:

w2 = 0 ⇔ dσ : dε= dσN dσ= dσNs dσ= 0 (13)

⇔ dσ2
1

E1
+ dσ2

2
E2

+ dσ2
3

E3
−

(
ν2

1
E1

+ ν1
2

E2

)
dσ1dσ2

−
(
ν3

1
E1

+ ν1
3

E3

)
dσ1dσ3 −

(
ν2

3
E3

+ ν3
2

E2

)
dσ3dσ2 = 0

(14)

with Ns the symmetrical part of N . Equation 14 is the gen-
eral equation of an elliptical cone in the incremental princi-
pal stress space (Prunier et al. [2009c]). If we assume that at
the virgin isotropic state all the eigenvalues of Ns are posi-
tive and they are then evolving continuously with the load-
ing parameters, the following results hold:

• during the first loading steps all 3 eigenvalues are
positive. Equation 14 has no solutions. The material
is unconditionally stable.

• a first eigenvalues vanishes. Solution of Equation 14
is reduced to a single direction. If the loading path
follows this particular direction the material is in an
unstable state. The set of stress points such that the
instability cone is reduced to a single direction de-
fine what we call the limit of the bifurcation domain
(Darve et al. [2004], Darve and Vardoulakis [2004]). It
is a surface plotted in the 6D stress space strictly in-
cluded inside the plasticity limit for non associated
materials (Ns ̸= N ). An illustration of such limit in
the principal stress space is displayed on Figure 3.

• the lowest eigenvalue is negative and the two others
are positive. Solution of Equation 14 is an elliptical
cone. An illustration of such cones is presented on
Figure 4. Due to the existence of tensorial zones
for any rate independent material, these elliptical
cones have to be truncated inside their own tenso-
rial zone. If the loading path follows one of the par-
ticular directions include inside the cone (boundary
included) the material is in an unstable state. The
stress point is strictly inside the bifurcation domain.
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Figure 2. Shape of the solutions of equation 14 as a
function of the sign of the eigenvalues. Eigenvalues are
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to evolve continuously with the loading parameters.
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Figure 3. Bifurcation limit for the elasto-plastic mod-
els of Darve et al. [1995] calibrated on a dense
sand.(Prunier et al. [2009a,b,c])

• the second eigenvalue vanishes (2 eigenvalues with
opposite sign and one equal to zero). Solution of
Equation 14 is the intersection of two planes. This
last mathematical solution will be discussed later
in the paper in relation with the cones that exist for
stress points lying on the plasticity limit.

An illustration of such mathematical solutions is given in
figure 2. Let us note that, the bifurcation domain and the
instability cones can be also presented in the strain space
(Prunier et al. [2009c]). Indeed, denoting

M = N−1 (15)
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Figure 4. Some cones of unstable loading directions
obtained with the Darve’s model calibrated on a dense
sand (Prunier et al. [2009a,b,c]). The first one is re-
duced to single direction and corresponds to a stress
state on the bifurcation limit. The second one corre-
sponds to a stress state within the bifurcation domain
and strictly inside the plasticity limit.

and Ms its symmetric part, we get

w2 = 0 ⇔ dεMdε= dεMs dε= 0 (16)

As a consequence it can be proved that the lowest eigen
value of Ns vanishes at the same time than the one of Ms

(Prunier et al. [2009a]).
It is worth noting that any loading direction corresponds

to a particular loading path. In geotechnical applications,
the most famous loading path which can lead to a failure in-
side the plasticity limit is the undrained triaxial path. This
loading path is defined by the following relationships:{

dε1 = cst > 0
dε1 +2dε3 = 0

(17)

Index 1 stands for axial direction and index 3 for radial direc-
tion. Along this loading path, the second order work can be
rewritten with the conjugated variables of the test :

w2 = dσ : dε= d q dε1 +dσ3 dεv (18)

Due to the condition 17:

w2 = d q dε1 (19)

Thus, loose or normally consolidated soils are in unstable
state when d q ⩽ 0 for this particular loading path. At the
peak of q a generalized flow rule can be defined (Darve et al.
[2004], Prunier et al. [2009a,b,c]). In fact, for such loading

Figure 5. Sketch of the unloading path at constant
q and typical response of some geomaterials to this
path.

path, the incremental constitutive relationship can be writ-
ten as follows :

S
{

dε1

dσ3

}
=

{
d q
dεv

}
(20)

with

S =
[

E1 2
ν1

3
E3

E1 −1

1−2ν3
1

2
E3

(
1−ν3 −2ν1

3ν
3
1

)] (21)

The analytical expression of S is developed in appendix A.
Hence when d q = 0, due to the relationship 17, we get :

S
{

dε1

dσ3

}
=

{
0
0

}
(22)

which defines what we call a generalized flow rule with the

mixed variables

{
dε1

dσ3

}
and the operator S.

∃
{

dε1

dσ3

}
̸=

{
0
0

}
| S

{
dε1

dσ3

}
=

{
0
0

}
(23)

As a consequence an effective failure occurs strictly inside
the plasticity limit.
A second interesting particular loading path to be analysed
is the q constant stress path. After a first loading path that
provides a non zero deviatoric stress to the soil sample (like
a drained triaxial path), a decrease of the mean stress is
followed at constant deviator stress. An illustration of this
stress path and a possible response of the material to this
path is presented in Figure 5. Such stress path can be quali-
tatively typical of a rising water table, or of excavating works.
In fact, for such applications some soil points are subjected
to an unloading where the mean pressure decreases more
quickly than the deviatoric one. To illustrate this purpose,
we present some results of the simulation of a tunnel exca-
vation in Appendix B.
This unloading at constant deviatoric stress can be defined
with the following relationships:{

dσ′
1 = cst < 0

d q = 0
(24)

because
d q = 0 ⇔ dσ′

1 = dσ′
3 = d p ′ (25)

Along this stress path, the second order work can be rewrit-
ten with the conjugated variables of the test :

w2 = dσ : dε= dσ′
1 dεv −2dε3 d q (26)
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Due to the condition 24:

w2 = dσ′
1 dεv (27)

Along this stress path, the incremental constitutive relation-
ship can be written as follows :

T
{

dσ′
1

−2dε3

}
=

{
dεv

d q

}
(28)

with

T =
 1−4ν3

1
E1

+ 2ν3
1ν

1
3

E1(1−ν3) 2
1−ν3−ν1

3
1−ν3

1+ E3
E1

ν3
1

1−ν3
− E3

2(1−ν3)

 (29)

The expression of matrix T is developed in Appendix A.
Hence when dεv = 0, due to the relationship 24, we get :

T
{

dσ′
1

−2dε3

}
=

{
0
0

}
(30)

A generalized flow rule is defined with the mixed variables{
dσ′

1
−2dε3

}
and the operator T

∃
{

dσ′
1

−2dε3

}
̸=

{
0
0

}
| T

{
dσ′

1
−2dε3

}
=

{
0
0

}
(31)

Thus an effective failure occurs strictly inside the plasticity
limit, but it is triggered with a strain component (extremum
of εv ) instead of a stress component.

In a more general framework, it is always possible to de-
fine a set of linear combinations of dσ and dε as follows:

dσl c =Cσdσ (32)

and
dεl c =Cεdε (33)

such that :
w2 = dσ : dε= dσlc : dεlc (34)

The condition to get the effective failure inside the plastic-
ity limit is that the test is driven with mixed parameters as
follows :

F
[

dεa
lc

dσb
lc

]
=

[
dσa

l c
dεb

l c

]
(35)

with :

dσlc =
[

dσa
l c

dσb
l c

]
(36)

and

dεlc =
[

dεa
lc

dεb
lc

]
(37)

In fact, when :

F
[

dεa
lc

dσb
l c

]
=

[
0
0

]
(38)

along the loading path, w2 = 0, a generalized flow rule is de-
fined and an effective failure occurs. To conclude with this
section, the conditions that enable failures strictly inside the
plasticity limit are presented below.

(1) the stress point should be included inside the bifur-
cation domain

(2) the loading path should be inside (boundary in-
cluded) the direction of one of the cones of unstable
loading directions. These first two conditions are
sufficient to get the loss of stability of the sample.

(3) the condition to get an effective failure is that condi-
tions 1 and 2 are fulfilled and further more that the
test is driven with proper mixed parameters.

4. A theoretical proper way to
characterize the plasticity limit

In the framework of the elasto-plasticity theory recalled in
section 3, the ultimate plasticity limit is defined with

det (M) = 0 (39)

with M the tangent operator such that :

dσ= Mdε (40)

while a failure that occurs inside this plasticity limit is de-
fined with:

det (F ) = 0 (41)

with F defined in a similar fashion than in equation 35. Fur-
thermore some algebra allows to prove that (Prunier et al.
[2009a,b,c]):

det (F )⩽ det (M) (42)

But from a practical point of view, constitutive relationships
are characterized by analyzing some experimental tests. On
these tests, the failure state has to be properly characterized,
and we have to know if this failure state corresponds to an ul-
timate failure state lying on the plasticity limit or is a failure
state that occurs inside the bifurcation domain.
In order to give practical answers to this problem, we pro-
pose to exploit the fact that for the associated materials the
bifurcation domain limit and the plasticity limit coincide.
Indeed in this last case we have det(M) = det(Ms ) = 0 on
the limit. To do so, we will answer to the following questions
:

(1) Is it possible to define some loading path whose the
part of the response of the material that provides
the value of w2 is independent of its associativity? In
the exemple of the undrained triaxial loading path,
only the response in term of d q gives the value of
w2, since w2 = d qdε1 in this case (see equation 19).
The response in term of dσ3 does not affect w2 since
dεv = 0 by definition of the loading path. Neverthe-
less, w2 depends on the associativity of the material
along this loading path since w2 never vanishes be-
fore the plasticity limit for dense sands and vanishes
before for loose sands.

(2) When the existence of such loading paths is proved,
can they scan every direction of the stress space to
delineate experimentally the plasticity limit?

From a mathematical point of view a non associated mate-
rial is characterized by the loss of its major symmetry on its
tangent operator M . Hence loading paths that answer ques-
tion 1 are loading path whose the part of the response of the
material which affect w2 is independent of the symmetry of
its tangent operator. From an obvious manner, a part of the
set of these loading paths are any 1D loading path according
the second order work. We can quote :
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• simple compression / traction tests : w2 = dσ1dε1+
2dσ3dε3 = dσ1dε1 because σ3 = dσ3 = 0. What is
essential in this particular case is that w2 = dσ2

1/E1

which is independent of the associativity of the ma-
terial. But these tests are useless for cohesionless ge-
omaterials.

• drained triaxial tests : w2 = d qdε1 + dσ3dεv =
dσ1dε1, because dσ3 = 0. And we also have
w2 = dσ2

1/E1 which is independent of the asso-
ciativity of the material.

As a consequence, the q peak on a drained triaxial test char-
acterizes properly an ultimate failure lying on the plasticity
limit. In fact along such loading path, the response of the
material in the plane

(
q −ε1

)
is independent of the associa-

tivity of the material. In other word, if it was possible to build
two materials purely subjected to a Mohr-Coulomb model
with the first one be associated

(
ϕ=ψ)

and the second one
be non associated

(
ϕ ̸=ψ)

, their response in the
(
q ,ε1

)
will

be strictly identical.
Standards axisymmetric tests do not allow to delineate
the totality of the plasticity limit, but true 3D triaxial tests
(Lanier et al. [1989]) defined by :

dε1 = cst > 0
dσ2 = 0
dσ3 = 0
σ0

2 ̸=σ0
3

(43)

allow such a characterization. Starting from the virgin
isotropic state, a first drained triaxial path can be followed
along the direction 2 or 3 to get σ0

2 ̸= σ0
3 and the drained

triaxial path can be then completed along the direction 1. As
this loading program is not straightforward, loading paths at
constant Lode’s angle are generally preferred to characterize
the 3D failure surface.
We are now interested in knowing if other loading paths
defined experimentally provide values of w2 which are in-
dependent of the associativity of the material. To do so, we
introduce an avatar material such that :

ν
j a
i

Ei
=
νi a

j

E j
∀(i , j ) ∈ [1,3] (44)

and

ν
j a
i

Ei
̸= 1

2

(
ν

j
i

Ei
+
νi

j

E j

)
(45)

We are looking for particular loading directions in the 3D
space of incremental principal stress such that :

w2 = w a
2 (46)

with w a
2 the value of the second order work of the avatar

associated material as defined above.

For the sake of clarity we adopt a stepwise approach and
first develop this idea for axisymmetric conditions. Let us in-
troduce the stress proportional loading path :

dσ1 = cst ̸= 0
dσ2 = dσ3

dσ3 +Rdσ1 = 0 |R ∈R
(47)

Due to the relationship 47, the second order works is written
:

w2 = dσ1 (dε1 −2Rdε3) (48)

Injecting the constitutive relationship 85 plus the fact that
dσ3 =−Rdσ1 we get :

w2 =
(

2(1−ν3)

E3
R2 +2

(
ν3

1

E1
+ ν1

3

E3

)
R + 1

E1

)
dσ2

1 (49)

In the same manner we find for the avatar associated mate-
rial :

w a
2 =

(
2(1−ν3)

E3
R2 + 4ν3a

1

E1
R + 1

E1

)
dσ2

1 (50)

Making w2 −w a
2 = 0, we look for R such that:

R

(
ν3

1

E3
+ ν1

3

E1

)
= 2R

ν1a
3

E1
(51)

We can then easily conclude that under axisymetric con-
ditions only the value of R = 0 (that is too say the drained
triaxial path) provides a loading path whose evolution of
the second order work quantity is independent of the as-
sociativity of the material. Nevertheless this last condition
is very strong. This means that without any knowledge of
the material, it can be stated that no bifurcation can occur
before reaching the plasticity limit during the test if the
sample remains homogeneous. In fact, strain localisation
can be observed for some materials just before reaching the
maximum deviatoric stress for drained triaxial path. In the
latter case, the material is no longer homogeneous and the
stress-strain response at the boundary is not characteristic
of the material behaviour. Furthermore, it can be proven
that w2 = 0 in a localized band when it appears (see Ap-
pendix C after Nicot and Darve [2011], Wan et al. [2017]).
Questions of strain localization are not the purpose of this
paper and will not be developed further in this work.

We will now investigate 3D conditions in the principal
stress space: 

dσ1 = cst ̸= 0
dσ2 +R1dσ1 = 0 |R1 ∈R
dσ3 +Rdσ1 = 0 |R ∈R

(52)

For these stress paths, the expression of the second order
work is:

w2 = dσ1 (dε1 −R1dε2 −Rdε3)+ (dσ2 +R1dσ1)dε2+
(dσ3 +Rdσ1)dε3

(53)

Injecting the constitutive relationship 84 plus the fact that
dσ2 =−R1dσ1 and dσ3 =−Rdσ1 we get :

w2 =
(

1

E1
+ R2

1

E2
+ R2

E3
−

(
ν2

3

E3
+ ν3

2

E2

)
R1R+(

ν1
2

E2
+ ν2

1

E1

)
R1 +

(
ν1

3

E3
+ ν3

1

E1

)
R

)
dσ2

1

(54)

In the same manner we have for the avatar associated mate-
rial :

w a
2 =

(
1

E1
+ R2

1

E2
+ R2

E3
− 2ν2a

3

E3
R1R + 2ν2a

1

E1
R1 +

2ν3a
1

E1
R

)
dσ2

1

(55)
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Making w2 −w a
2 = 0, we look for R and R1 such that:

Φ (R,R1) =
(

2
ν2a

3

E3
− ν2

3

E3
− ν3

2

E2

)
RR1−(

2
ν3a

1

E1
− ν1

3

E3
− ν3

1

E1

)
R −

(
2
ν2a

1

E1
− ν1

2

E2
− ν2

1

E1

)
R1 = 0

(56)

The trivial solution is given for R = R1 = 0 which corre-
sponds to the 3D drained triaxial path. Else the reduction of
the conic Φ (R,R1) under its canonical form prove that gen-
eral solutions are of hyperbolic shape. But these hyperbolic
solutions depend on the directional tangent Young’s mod-

uli Ei and of directional tangent Poisson’s ratio ν
j
i which

are not known a priori when performing an experimental
test. Hence the detailed analysis of these hyperbolic solu-
tions are useless in practice. Thus, we can conclude that
only generalized 3D drained triaxial path allows a proper
characterization of the plasticity limit for certainty. For
the sake of clarity, the demonstration was based on the
assumption of orthotropic behavior. But it’s also simple to
prove that w2 cannot vanishes before reaching the plasticity
limit for a generalized 6D drained triaxial direction in the
case of general rate-independent behavior (see Appendix F).

Nevertheless, it is not always easy to perform a gener-
alized drained triaxial path experimentally. In particular,
radial stress paths in the deviatoric plane ar generally pre-
ferred to characterize the 3D plasticity limit (see eq. 52). In
this last case, it is sufficient to plot the response of the mate-
rial in term of (ε1 −R1ε2 −Rε3) and to look if this variable is
going through an extremum during the test (see expression
of w2 in equation 53). If not, w2 remains strictly positive
during the test and vanishes only on the plasticity limit
because of the existence of the flow rule. Indeed, the flow
rule states:

∃dε ̸= 0, M ·dε= 0 (57)

as a consequence, w2 = 0 for any loading direction toward
the plasticity limit. We can then state that, the failure is
reached on the plasticity limit without a previous bifurca-
tion if the sample remain homogeneous. To illustrate this
purpose we present the simulation of radial stress paths in
the deviatioric plane to characterize experimentally the 3D
Mohr-Coulomb envelop. These paths are at constant mean
stress and constant Lode’s angle θ. They can be defined with
the following relationships :

dσ1 = cst
√

2
3 cosθ

dσ2 =−cst
(

1p
6

cosθ+
p

2
2 sinθ

)
cst ∈R∗+

dσ3 =−cst
(

1p
6

cosθ−
p

2
2 sinθ

) (58)

with cst a strictly positive constant parameter. It is worth
noting that these paths are particular ones of 52 with:{

R1 = 1
2 +

p
3

2 tanθ

R = 1
2 −

p
3

2 tanθ
(59)

Since the Mohr-Coulomb failure criterion is isotropic (i.e.
its expression is invariant to any change of reference frame),
a series of simulations with θ ∈ [0,60◦] is sufficient to char-
acterize the plasticity limit. On the figure 6 we present the

Figure 6. response of the octo-linear model cali-
brated on a dense Hostun sand to radial loading paths
in the deviatoric plane. Response of the loose Hostun
sand is displayed in Appendix D

response of 60 simulations using the octolinear model of
Darve (Darve and Labanieh [1982], Darve et al. [1995]) cal-
ibrated on a dense Hostun sand, for illustrative purposes
only without attempting to demonstrate general results. If
these curves were derived from laboratory tests, we could
conclude that the maximum value reached by σ1 charac-
terises the failure state at the ultimate plastic limit, because
the response in terms of (ε1 −R1ε2 −Rε3) does not show an
extremum.

In conclusion, only drained triaxial tests can unequivo-
cally characterize the plastic limit. Secondly, proportional
stress tests can also be used if we ensure that no bifurcation
has occurred beforehand by checking that (ε1 −R1ε2 −Rε3)
has not passed through an extremum. For proportional
strain tests, such as the undrained test, this becomes com-
plicated because :

(1) the maximum stress (σ1 −R1σ2 −Rσ3) can be
reached before the plastic limit (q pic for the
undrained axisymmetric test: R1 = R = 0.5)
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(2) the path generally tends to tangent the plasticity
limit, which makes its characterization much less
precise.

However, we agree that for materials with low permeability,
the undrained triaxial test remains the simplest and most ef-
fective test to carry out to characterize the behavior of the
material.

5. Discussion about the shape of
instability cones lying on the
plasticity limit

In former works, the shape of instability cones lying on the
plasticity limit was not investigated. Moreover, the analyti-
cal solution of the equation 14 consisting of two intersecting
planes has only been considered as an infinite elliptical cone
and as a physically impossible limit state. That’s why we fol-
low the investigations in this work. In this section we also
adopt a progressive approach by starting the investigation
in axisymmetric conditions and then developing the idea in
3D conditions.

5.1. axi symmetric conditions
In axisymmetric conditions the tangent constitutive rela-

tionship reads:{
dε1p
2dε3

}
=

 1
E1

−p2
ν1

3
E3

−p2
ν3

1
E1

1−ν3
E3

{
dσ1p
2dσ3

}
(60)

Hence the equation of the instability cones gives:

w2 =
dσ2

1

E1
+2

(1−ν3)

E3
dσ2

3 −2

(
ν3

1

E1
+ ν1

3

E3

)
dσ1dσ3 ⩽ 0 (61)

⇔ dσ2
1 +2

(1−ν3)E1

E3
dσ2

3 −2

(
ν3

1 +
ν1

3E1

E3

)
dσ1dσ3 ⩽ 0 (62)

On the plasticity limit one Young’s modulus vanishes since:

det(M) = E1E3

1−ν3 −2ν3
1ν

1
3

(63)

Let us assume that:
E1 = 0 (64)

we get :

dσ2
1 −2ν3

1dσ1dσ3 ⩽ 0 (65)

⇔ dσ1
(
dσ1 −2ν3

1dσ3
)
⩽ 0 (66)

This domain is then bounded by the two lines:

dσ1 = 0 (67)

and
dσ1 −2ν3

1dσ3 = 0 (68)

Let us now detail this domain:

dσ1 −2ν3
1dσ3 ⩽ 0 (69)

⇔ dσ1

dσ3
⩽ 2ν3

1 if dσ3 > 0 (70)

⇔ dσ1

dσ3
⩾ 2ν3

1 if dσ3 < 0 (71)

Figure 7. instability secant planes (degenerated
cones with an infinite wider axis) for a stress state ly-
ing on the plasticity limit. Sum up of equations 66 to

77. 0, 2ν3±
1 and 1+ sinψ

1−sinψ are the slope of the instability

secants planes.

When the plasticity limit is reached after a drained triaxial
path, we have:

ν3
1 =−

(
dε3

dε1

)
dσ3=0

=−dε3

dε1
(72)

For models based on the Mohr-Coulomb limit the ratio
dε3/dε1 at failure allows to define the dilatancy angle ψ.
The flow surface is simply defined by:

g :σ1 − 1+ sinψ

1− sinψ
σ3 = 0 | σ1 >σ2 >σ3 (73)

and its normal

n⃗ =


1
0

− 1+sinψ
1−sinψ

 | σ1 >σ2 >σ3 (74)

allows to define the ratio dε3/dε1 at failure as a function of
sinψ for σ1 >σ2 >σ3. For axisymmetric conditions, σ2 =σ3

and we assume:

n⃗ = 1

2


1
0

− 1+sinψ
1−sinψ

+ 1

2


1

− 1+sinψ
1−sinψ

0

 (75)

which is the bisector line of the normals of the two secant
planes for the Lode’s angle θ = 0. This provides the following
relationship for the flow direction:(

dε3

dε1

)
f ai lur e

=−1

2

1+ sinψ

1− sinψ
(76)

Combining equations 70, 72 and 76, we get the upper limit
of the cone for a drained triaxial path :

dσ1

dσ3
⩽

1+ sinψ

1− sinψ
for (dσ1,dσ3) ∈R2

+ (77)

We sum up the results between equation 66 and equation 77
on the figure 7. Nevertheless, the direction given by 2ν3

1 does
not necessarily matches the direction given by the plastic-
ity limit itself. In fact for all directions crossing the plastic-
ity limit we have w2 = 0 since Mdε = 0. Hence the tangent
to the plasticity limit surface is a cone of unstable loading
directions open at 180◦. As we assume here that the stress
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Figure 8. instability secant planes (degenerated
cones with an infinite wider axis) for a stress state ly-
ing on the plasticity limit. Sum up of equations 66 to 77
and merging the plasticity limit condition. 0, 2ν3±

1 and
1+ sinψ
1−sinψ are the slope of the instability secants planes.
1+ sinφ
1−sinφ is the slope of the Mohr-Coulomb plane.

point is lying on the plasticity limit, only neutral loading di-
rections are authorized ultimately. For a Mohr-Coulomb cri-
terion this neutral direction is given by:

dσ1

dσ3
= 1+ sinϕ

1− sinϕ
(78)

As a consequence we also have to merge the solutions of the
instability cones shown in figure 7 with the tangent plane of
the plasticity limit. Such final solution is given in figure 8.

5.2. 3D conditions
Starting from equation 14 which is the general equation

of an elliptic cone, we know that this shape can degenerate
to the one of the intersection of two planes when the max-
imum and the minimum eigenvalues are of opposite sign
and when the intermediate one is zero. This is what happens
for a stress state lying on the plasticity limit due to the fact
that one Young’s modulus vanishes. In fact we have:

det(M) = E1E2E3

1−ν2
1ν

1
2 −ν3

1ν
1
3 −ν3

2ν
2
3 −ν2

1ν
3
2ν

1
3 −ν3

1ν
2
3ν

1
2

(79)

Let us assume that E1 = 0 and introduce this condition di-
rectly inside the equation 14 by multiplying each term by E1

we directly get the equations of these two secant planes:

dσ2
1 −ν2

1dσ1dσ2 −ν3
1dσ1dσ3 = 0 (80)

⇔ dσ1
(
dσ1 −ν2

1dσ2 −ν3
1dσ3

)= 0 (81)

the first plane is then the horizontal plane given by the carte-
sian equation :

dσ1 = 0 (82)

and the second one is the one given by the cartesian equa-
tion :

dσ1 −ν2
1dσ2 −ν3

1dσ3 = 0 (83)

We have to notice that this two secant planes corresponds to
the limit case of the elliptic cone with an infinite wider axis
of the ellipse. As for the axisymmetric case this last plane
does not necessarily matches the tangent plane of the plas-
ticity limit, and the set of unstable loading directions have
to be merged with the ones normal to the tangent plane of
the plasticity limit. On figure 9 we present cones of unsta-
ble loading directions in the vicinity of the plasticity limit
obtained with the octolinear model of Darve. In fact the

Figure 9. 3D instability cone get with the octolin-
ear model of Darve for a stress point in the vicinity of
the Mohr-Coulomb envelop. On th right figure we only
kept the cone for the tensorial zone [dσ1>0, dσ2>0,
dσ3>0] and added the tangent plane to the Mohr-
Coulomb envelop in dashed line.

plasticity limit is reached asymptotically with this model.
Thus cones in each tensorial zone has been plotted using
equation 14. On the right figure 9, we have kept only the
cone in the tensorial zone (dσ1 > 0,dσ2 > 0,dσ3 > 0). We
can see that the elliptical cone is almost an intersection of
two planes as shown from a mathematical point of view. We
also added in dashed line the tangent plane corresponding
to the plasticity limit. As in axisymmetric condition we can
see that it is not coincident with the upper plane given by
the equation 14.

In conclusion of this discussion, we can quote that the
tangent plane to the plasticity limit can be viewed as an
instability "cone" that opens suddenly at 180◦ in both tan-
gential directions. In this sense it is distinct from the other
instability cones that open continuously inside the bifurca-
tion domain until to be opened in the form of two secant
planes when reaching the plasticity limit. In our knowledge,
instability cones have been studied with Darve’s model,
Pastor-Zienkiewicz’s model (Pastor et al. [1990]), Plasol’s
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model (Barnichon [1998]), and a basic DEM model using
spherical particles (Sibille et al. [2007]). The first two ones
predict this upper right instability cone, while the two other
ones don’t. Because of the DEM model we were prone to
think that this cone was an artifact of the Darve and Pastor-
Zienkiewicz models, but this last analytical solution given
for stress states lying on the plasticity limit encourage us to
think that this upper right cone develops really continuously
inside the bifurcation domain, before developing ultimately
into two secant planes at the plasticity limit.

6. Discussion about the sensitivity of
the limit of the bifurcation
domain with the evolution of the
internal state of the material

Experimental evidence shows that for geomaterials, the
critical state characterised by a constant void ratio and a
constant deviatoric stress for infinite deviatoric strain is a
state independent of the initial internal state of the mate-
rial. The plasticity limit at the critical state can therefore be
described as unique. As for the ultimate plasticity limit (at
the peak of the stress deviator), the experimental evidence
clearly shows its dependence on the initial void ratio. Re-
sults presented with the discrete element method also prove
that this limit depends on other more complex internal
parameters (Zorzi et al. [2017]). However, this dependence
seems limited when considering a given initial state and
monotonic paths or even cyclic paths with a limited num-
ber of cycles. Indeed, from a initial reference configuration
of the soil sample, a particular point on the plasticity limit
is characteristic of a failure state after any loading paths
that avoid every direction inside an instability cone. Now,
we are interested in knowing if the limit of the bifurcation
domain presented in figure 3 and characterized with a clas-
sical drained triaxial path can be also considered as a weakly
depend surface with the internal state of the material. From
an analytical point of view it is not obvious when looking
at the equation 14. In fact eigenvalues of Ns depends on

the evolutions of Ei and ν
j
i

((
i , j

) ∈ [1,3]2
)
. Thus, the first

unstable loading direction that appears may be strongly
subject not only to the initial state of the material but also of
the previous loading path. To investigate this point we have
simulated a drained triaxial loading path stopped before
reaching the plasticity limit in compression (ε1 ≈ 2%) and
we then imposed an unloading until the plasticity limit in
extension. In figure 10, we have reported the response of
the materials which is representative of a dense sand. The
red crosses delimit the bifurcation domain in the compres-
sion phase while the yellow circles delimit the bifurcation
domain in the unloading phase. Starting from the initial
isotropic state, a first unstable direction appears at point
A (see figure 12. Then instability cones grows and develop
until point B. At this point we start the unloading. Instability
cones shrink and reduce to a single direction in point C .
Between points C and D we are in a fully stable domain:
no instability cones exist. Finally a first unstable direction
appears in point D which is in the vicinity of the hydrostatic
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Figure 10. Response of the Octolinear model cal-
ibrated on a dense Hostun sand to an alternated
drained triaxial path

stress lane. If this stress state was reached from a virgin
initial hydrostatic state it would have been in a fully stable
domain. This proves that the limit of the bifurcation domain
is moving and deform with the evolution of the internal
state of the material (which is characterized by the evolu-
tion of internal variables of elasto-plastic models). From
point D instability cones are growing and developing until
point E . Both bifurcation domains obtained from the initial
isotropic state and the one obtained after the unloading are
presented as function of the ratio q/p on the figure 11. As
can be seen on this last figure, the limit of the bifurcation
domain evolves strongly with the loading path and thus with
the internal state of the material. The instability cones ob-
tained at the points A,B ,C ,D ,E are reported in figure 12. In
appendix E, we present a similar simulation carried out with
the same model calibrated on soft sand. The conclusions
on the evolution of the bifurcation domain remain similar.
Nevertheless, the response of such a material in the plane
(εv − ε1) is very different since a strong induced anisotropy
develops as soon as the range 0%⩽ ε1 ⩽ 2% (see figure 18).
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Figure 11. Evolution of the bifurcation domain for
a dense sand. At the top, the bifurcation domain ob-
tained starting from the initial isotropic state. At the
bottom, the one obtained during the unloading.

These initial simulation results modestly show that for a
model developed to describe the cyclic behaviour of gran-
ular materials such as sand, the limit of the bifurcation
domain evolves continuously with the loading path. The
experimental results on loose sands of Doanh et al. provide
a first observations that could confirm this conclusion ob-
tained with Darve’s model. In their work, they carry out a
series of undrained tests (CU+u) on very loose sands. The
first was standard, but for the others they first prestress the
sample with a drained test (CD) at a defined shear ratio
η = q/p ′. The higher the shear ratio η, the more similar
the qualitative undrained response is to a dense sand. The
authors emphasise that after the prestressing phase, the
void ratio didn’t change much and always remained around
0.9. (see figure 13). They prove that a loose sand can be
stable until reaching the plasticity limit along a C.U+u path.
These results go in the direction of a strong evolution of the
bifurcation domain limit with the evolution of the internal
state of the sample, even if no directional research can be
carried out experimentally.
The results presented in figure 10 show that an hydrostatic
stress state is found in the bifurcation domain after a single
unloading cycle with the octo-linear model. This should be
validated experimentally, but this would be very compli-
cated to do because of the directional research required.
Failing that, future work will be carried out with different
discrete element models in order to validate these two
observations:

(1) the evolution of the bifurcation domain limit with
the loading path

(2) some particular granular assembly could be poten-
tially unstable under an hydrostatic (or nearly hy-
drostatic) stress state

Despite the lack of validation of these results, we can make
some remarks on writing constitutives models for soils.
The simplest models are based on a yield surface with an
isotropic strain hardening. For these models, when starting
from an isotropic virgin state, the initial bifurcation domain
limit can be close to the initial yield limit without being con-
fused with it. Then once the initial bifurcation domain limit
is passed, this boundary is always confused with the current
yield limit. In fact, the bifurcation domain becomes smaller
as the strain hardening proceeds and ultimately merges

Figure 12. Development of instability cones along
the stress path for the dense sand.
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Figure 13. Experimental results on the Toyoura sand
according to Doanh et al. [2013]. The first test ’+’ is a
standard C.U+u test. The other two ’o’ and ’x’ are first
prestressed C.D. tests until η 1.10 and η 1.29 respec-
tively. They are then unstressed until η 0 and finally
sheared to failure using the standard undrained pro-
cedure. e0 denotes the void ratio at the end of the first
isotropic consolidation pressure 100 kPa, while ei de-
notes the void ratio at p′ 100 kPa, but the end of the
pre-shearing process.

with the plastic limit even if an unloading is subsequently
performed. Consequently, it would be better to avoid using
such models for any problem where some points may be
unloaded with respect to the yield surface considered.

As a consequence, elasto-plastic models based on a kine-
matic strain hardening or hypo plasticity concept are better.
But we understand that future work will have to be able to
determine whether a non-infinitesimal radius of the elastic
domain can be relevant from a physical point of view. In-
deed, for a state located in the bifurcation domain, any un-
loading in the elastic radius is unconditionally stable. This
loss of continuity of the evolution of the bifurcation domain
limit with the loading parameters seems questionable.

7. Conclusion
In this paper we investigate the stability and failure of non-
associated elasto-plastic materials such as geomaterials. We
have recalled that in such materials effective instabilities
and failures can develop strictly within the plasticity limit
defined as the ultimate Mohr-Coulomb plasticity surface.
Based on this observation, the question of the experimen-
tal characterisation of such an ultimate limit is addressed.
We have proven in section 4 that true triaxial tests (with
σ0

2 ̸= σ0
3) allow the full characterisation of the plasticity

limit like the Mohr-Coulomb surface with certainty. For
non triaxial loading paths at constant mean stress and con-
stant Lode’s angle, it must be verified that no bifurcation
occurred during the test as presented in section 4 in figure 6.
Therefore we can say that the plasticity limit is only slightly

sensitive to variation of the internal state of the material.
Indeed, starting from a given initial state this ultimate limit
(mainly dependent of the initial configuration of the ge-
omaterials) does not depend on the subsequent loading
path. From a mathematical point of view it is characterised
by the cancellation of one tangent Young’s modulus of
the tangent constitutive matrix. And the evolution of the
tangent moduli along a loading path does not affect the
non-associated character of the material. However, we have
shown in section 6 that the Darve’s octo-linear model can
describe a strong evolution of the bifurcation domain limit
with the loading path. In particular we have seen that this
model predict that some material are inside the bifurcation
domain under an isotropic stress state after a small loading-
unloading drained triaxial path. It is worth noting that the
existence of this bifurcation domain is conditioned by the
induced anisotropy which develops in a non associated way

(ν j
i /Ei ̸= νi

j /E j ) as it is the case for geomaterials. In this

sense, this boundary is very sensitive to the evolution of the
microstructure of the material with the loading.

We have recalled in section 5 that the instability cones de-
velop continuously in the bifurcation domain. From this we
have shown that their elliptical structure in the bifurcation
domain degenerates into the intersection of two intersect-
ing planes when the plasticity limit is reached. We have seen
that one of this plane is the horizontal plane in the space
(dσ1,dσ2,dσ3) when σ1 is the highest principal stress. The
second plane is between the tangent plane of the plasticity
limit whose the direction is expressed in term of the fric-
tion angle ϕ and the horizontal plane. When the plasticity
limit is reached after a triaxial path at (dσ2 = dσ3 = 0) the
direction of the second instability plane is defined with the
dilatancy angle ψ. The tangent plane to the plasticity limit
is a particular instability cone that arise suddenly with an
opening at 180◦, while the other ones develop continuously
from a single direction, to an elliptical shape and ultimately
to two secant planes that are distinct from the tangent plane
to the plasticity limit. Hence it can be seen in future works
if it exists a kind of a micro-mechanical signature of failures
reached in a direction crossing the plasticity limit compared
with the ones that hold for direction included in the other
instability cones.

Appendix A.
For homogeneous laboratory tests where principal stress
and principal strain axes coincide, the directional tangent
constitutive relationship writes:

dε1

dε2

dε3

=


1

E1
− ν1

2
E2

− ν1
3

E3

− ν2
1

E1

1
E2

− ν2
3

E3

− ν3
1

E1
− ν3

2
E2

1
E3




dσ1

dσ2

dσ3

 (84)

As a consequence, for axisymmetric conditions with 2 ≡ 3
we get: {

dε1p
2dε3

}
=

 1
E1

−p2
ν1

3
E3

−p2
ν3

1
E1

1−ν3
E3

{
dσ1p
2dσ3

}
(85)
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We are looking for the expression of the matrix S such that:

S
{

dε1

dσ3

}
=

{
d q
dεv

}
(86)

using relation 85 we get:

dε1 = 1

E1
dσ1 −2

ν1
3

E3
dσ3 (87)

and

dεv = 1−2ν3
1

E1
dσ1 +2

1−ν3 −ν1
3

E3
dσ3 (88)

Using expressions 87 and 88 we can built matrices α and β
such that: {

dε1

dσ3

}
=α

{
dσ1

dσ3

}
=

[
1

E1
−2

ν1
3

E3

0 1

]{
dσ1

dσ3

}
(89)

and {
d q
dεv

}
=β

{
dσ1

dσ3

}
=

[
1 −1

1−2ν3
1

E1
2

1−ν3−ν1
3

E3

]{
dσ1

dσ3

}
(90)

Hence relationship 86 reads:

Sα
{

dσ1

dσ3

}
=β

{
dσ1

dσ3

}
(91)

and

S =βα−1 (92)

with

α−1 =
{

E1 2 E1
E3
ν1

3
0 1

}
(93)

which finally gives :

S =βα−1 =
[

E1 2
ν1

3
E3

E1 −1

1−2ν3
1

2
E3

(
1−ν3 −2ν1

3ν
3
1

)] (94)

In the same way we can provide the expression of the matrix
T such that:

T
{

dσ′
1

−2dε3

}
=

{
dεv

d q

}
(95)

we build the matrixαT :{
dσ1

−2dε3

}
=αT

{
dσ1

dσ3

}
=

[
1 0

2
ν3

1
E1

2 1−ν3
E3

]{
dσ1

dσ3

}
(96)

and the matrix βT :{
dεv

d q

}
=βT

{
dσ1

dσ3

}
=

[
1−2ν3

1
E1

2
1−ν3−ν1

3
E3

1 −1

]{
dσ1

dσ3

}
(97)

and we finally get :

T =βTα
−1
T =

 1−4ν3
1

E1
+ 2ν3

1ν
1
3

E1(1−ν3) 2
1−ν3−ν1

3
1−ν3

1+ E3
E1

ν3
1

1−ν3
− E3

2(1−ν3)

 (98)

with

α−1
T =

{
1 0

−E3
E1

ν3
1

1−ν3

E3
2(1−ν3)

}
(99)

Figure 14. Initial mesh at the beginning of the exca-
vation phase in blue, and deformed mesh (x10) at the
end of the excavation phase in red.

ρ (kg /m3) E (MPa) ν C (kPa) φ ◦ ψ ◦
top layer 1900 45 0.3 10 30 1

middle layer 2000 200 0.3 20 35 1
bottom layer 2600 1000 0.3 250 20 1

Table 1. Main parameters of the 3 soils and rock lay-
ers.

Appendix B.
We present here a finite element simulation of the excava-
tion of a tunnel, using a usual elasto-plastic model based
on a Mohr-Coulomb like yield criterion with an isotropic
hardening and a non associative flow rule (the Plasol Model
(Barnichon [1998])). The principle of the simulation is basic:
a first step is done to initialize stresses by gravity loading,
then in a second step we remove element of soils that are
excavated and decrease progressively reactions forces at the
boundary of the created cavity. In the figure 14 the meshes
at the beginning and at the end of this second phase are
shown. It is constituted of 6 nodes triangles with 7 inte-
gration points. The boundary conditions are intuitive: the
bottom line is fixed vertically. The left and right vertical lines
are fixed horizontally. Three layers of soils are considered.
The main mechanical parameters of these three layers are
presented in the table 1. In figure 15 we present the maps
of the mobilized friction angle divided by the friction angle
at failure as well as a map of the local normalized second
order work criterion. Finally we present the stress path of
one point at the vicinity of the cavity during the excavation
phase (see figure 16) to illustrate the fact that the load-
ing direction is not so far from the unloading at constant
deviatoric stress analysed in section 3.
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Figure 15. Mobilized friction angle divided by the
friction angle at failure (top). Local normalized second
order work (bottom).

Figure 16. Loading path of point A during the exca-
vation phase.
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Appendix C.
Proof of w2 = 0 inside a localized band.
The Rice (Rice [1976]) localization criterion reads :

det
(
ni Mi j kl nl

)= 0, with n⃗ ̸= 0⃗ (100)

with n⃗ the normal vector to the localized band. This last con-
dition is equivalent to :

∃g⃗ ̸= 0⃗,
(

ni Mi j kl nl
)

gk = 0
=⇒

g j
(
ni Mi j kl nl

)
gk = 0

(101)

In addition, we have :

g j
(
ni Mi j kl nl

)
gk = 1/2

(
ni g j Mi j kl gk nl

)+1/2
(

ni g j M j i kl gk nl
)

(102)
due to the minor symmetry of the constitutive matrix. Hence
:{

g j
(
ni Mi j kl nl

)
gk = 1/2

(
ni g j Mi j kl gk nl

)+1/2
(
gi n j Mi j kl gk nl

)
= 1/2

(
ni g j + gi n j

)
Mi j kl gk nl

(103)
Furthermore, if we state :

dε= 1

2

(
n⃗ ⊗ g⃗ + g⃗ ⊗ n⃗

)
(104)

dε is a symmetric tensor as well as different from 0 by con-
struction, and :

g j
(
ni Mi j kl nl

)
gk = dεi j Mi j kl gk nl (105)

doing the same for the last two terms on the right, we finally
get :

det
(
ni Mi j kl nl

)= 0 ⇒ dεi j Mi j kl dεkl = dεi j dσi j = 0
(106)

inside the localized band.

Appendix D.
In this appendix we present similar results shown in Figure 6
but for the octo-linear model calibrated on the loose Hostun
sand.

Figure 17. response of the octo-linear model cali-
brated on a loose Hostun sand to radial loading paths
in the deviatoric plane.

Appendix E.
In this appendix we present the results of the simulation
presented in section 6, but using the Octolinear model
calibrated on a loose sand.
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Figure 18. Response of the Octolinear model cal-
ibrated on a loose Hostun sand to an alternated
drained triaxial path
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Figure 19. Evolution of the bifurcation domain for
a loose sand. At the top, the bifurcation domain ob-
tained starting from the initial isotropic state. At the
bottom, the one obtained during the unloading.

Figure 20. Development of instability cones along
the stress path for the loose sand.
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Appendix F.
Proof of w2 = 0 only at the plasticity limit for generalized 6D
drained triaxial path in even non orthotropic materials.
Let us consider the general tangent relationship:

dσ11

dσ22

dσ33p
2dσ12p
2dσ23p
2dσ31


=



m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m35 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66





dε11

dε22

dε33p
2dε12p
2dε23p
2dε31


(107)

that we rewrite as follows:{
dσ1

dσi

}
=

[
m11 M1i

M2i Mi i

]{
dε1

dεi

}
(108)

with dσ1 ≡ dσ11, dε1 ≡ dε11, dσi and dεi the vectors of 5
components [22, ...,31] of dσ and dε respectively, Mi i the
5X5 lower right submatrix, M1i the 1X5 upper right matrix
and M2i the 5X1 lower left matrix.
For a generalized 6D drained triaxial loading path along di-
rection the direction 1, the vector of components dσi is a
5X1 zeros vector, thus:

w2 = dσ1dε1 (109)

and by splitting eq.108 into two parts we get

dσ1 = m1dε1 +M1i dεi (110)

05x1 = M2i dε1 +Mi i dεi (111)

From eq.111 we get:

dεi =−M−1
i i M2i dε1 (112)

when Mi i is invertible. Including this last expression in
eq.110 we come up with:

dσ1 =
(
m11 −M1i M−1

i i M2i
)

dε1 (113)

using the Schur’s decomposition theorem that stands:

det(m) = det(Mi i )det
(
m11 −M1i M−1

i i M2i
)

(114)

we finally get:

dσ1 = det(m)

det(Mi i )
dε1 (115)

when Mi i is invertible. A a consequence the second order
work criterion takes the final form for these particular load-
ing paths:

w2 = det(m)

det(Mi i )
(dε1)2 (116)

Hence w2 vanishes only when det(m) vanishes, since dε1 ̸=
0. The permutation over all indices completes the proof.
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