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Abstract.
The work is focused on the formulation of a thermodynamically–

based constitutive theory for granular, cemented geomaterials, often
characterized by a open structure with high porosity and voids of large
diameter. Upon mechanical degradation processes such as bond rup-
ture and grain crushing, these material undergo large volumetric and
shear strains, and in some cases the deformations are so large that the
usual assumption of linearized kinematics may be not applicable. In the
first part of this work, the theory of hyperplasticity is extended to the
finite deformation regime by adopting a multiplicative split of the defor-
mation gradient into an elastic and a plastic part, under the assumption
of material isotropy. Grain breakage and bond damage processes are
accounted for through two micromechanically–inspired internal vari-
ables. A specific constitutive model for carbonatic cemented sands and
calcarenites is proposed as a relevant example of application. In the
second part, an implicit stress–point algorithm has been developed
which is amenable to closed form linearization, for the implementation
of the model into standard FE platforms. A series of numerical tests have
demonstrated the accuracy and efficiency of the proposed algorithm.
The simulation of plane strain biaxial tests, modeled as boundary–value
problems, has highlighted the role played by geometric non–linearity in
determining the evolution of the specimen deformation upon reaching
a bifurcation condition.

Keywords. Hard soils, Soft rocks, Hyperplasticity, Breakage mechanics,
Finite deformations, Multiplicative plasticity, Stress–point algorithm,
Consistent linearization
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1. Introduction
Since the early ’90s a significant body of experimental and
theoretical research activities has been addressed to the
study of natural geomaterials – typically classified as hard
soils–soft rocks (HSSR) – which are characterized by a rock–
like mechanical behavior at low stress levels, and a soil–like
response at medium to high stress levels.

These studies have been motivated by the need of ob-
taining a better understanding of the mechanical response
of such materials as observed in a number of practical ap-
plications, such as the evaluation of pile bearing capacity of
offshore platforms [McLelland, 1988, King and Lodge, 1988,
Jardine et al., 2018], the subsidence phenomena associated
to hydrocarbon extraction [Potts et al., 1988], the evaluation
of the stability conditions of underground excavations and
sub–vertical cuts in open pit quarries [Evangelista et al.,
2000, Bianchi Fasani et al., 2011].

In particular, a number of experimental studies have
been conducted on two classes of commonly found HSSR
deposits, namely: natural cemented carbonatic sands and
calcarenites [see, e.g. Uriel and Serrano, 1975, Airey, 1993,
Coop and Atkinson, 1993, Lagioia and Nova, 1995, Cuccov-
illo and Coop, 1999], and pyroclastic deposits of tuffs and
lapillistone, known in Italy with the local name of “poz-
zolana” stone [Aversa and Evangelista, 1998, Cecconi and
Viggiani, 2001].

Notwithstanding the large differences in the mineralogi-
cal composition of the constituents of those deposits, they
presents a number of common features, such as: a high ini-
tial porosity and void ratio; high compressibility after yield
under isotropic or oedometric compression; frictional be-
havior under shear, with typically high values of the friction
angle; fragile and mildly dilatant response under deviatoric
loading at low stress levels; ductile and strongly contractant
behavior in shear at medium to high stress levels, with peak
strength attained at large to very large strain levels, often
greater than 20%.

The reasons for such peculiar behavior is to be found in
the particular microstructure of such materials, character-
ized by the presence relatively weak grains (made of calcite
or amorphous silica) and of intergranular bonds of various
origin, which allow the solid skeleton to be stable with a
relatively large porosity, and impart to the material a higher
stiffness and strength than the corresponding unbonded
granular soil. Depending on the stress levels, a mechanical
loading process can produce a progressive degradation of
intergranular bonds and crushing of the individual grains,
which can occur even at relatively moderate stress levels.
Evidences of grain crushing in those materials have been
reported, among others, by Coop [1990] and Cecconi and
Viggiani [2001].

Constitutive modeling of cemented granular materials
undergoing mechanical degradation processes has been
addressed mainly within the framework of the theory of
hardening plasticity. Starting from the pioneering works of
Nova [1992], a number of works incorporate in the plastic-
ity formulation some suitable “bonding–related” internal
variables, monotonously decaying with the accumulation

of plastic deformations in order to deal with the effects
of intergranular bond rupture [see, e.g. Gens and Nova,
1993, Kavvadas, 1994, Lagioia and Nova, 1995, Rouainia and
Wood, 2000, Liu and Carter, 2002, Tamagnini et al., 2002,
Nova et al., 2003, Ciantia and di Prisco, 2016, Tamagnini and
Ciantia, 2016].

The description of the effects of grain crushing from a
purely phenomenological point of view has been attempted
by Cecconi et al. [2002] and DeSimone and Tamagnini
[2005], who linked the effects of grain crushing to the decay
of the critical friction angle of the material. In DeSimone and
Tamagnini [2005], the formulation of the elastoplastic model
has been derived from the principles of thermomechanics
of continuous media, starting from available experimental
stress–dilatancy data. More recently, Kikumoto et al. [2010]
proposed a modification of the Severn–Trent model [Gajo
and Wood, 1999] by incorporating a dependence of the crit-
ical state line in e:p space and of the crushing yield surface
in stress space on a scalar grading state index, the evolution
of which is controlled by plastic volumetric strains.

A significant progress in the understanding and mod-
eling of the effects of grain breakage on the behavior of
uncemented granular materials has been provided by the
theory of breakage mechanics proposed by Einav [2007a,
2007b]. In this approach, the macroscopic evolution equa-
tions for the material are derived from thermodynamics
principles, starting from two potentials, the free energy
function and the dissipation function. The key point is that
the effects of grain crushing are related to the changes of
a micromechanically–inspired internal variable derived
from the microscale via statistical homogenization. Later,
Tengattini et al. [2014] and Das et al. [2014] extended the
principles of breakage mechanics to cemented granular
soils, incorporating a second micromechanical internal
variable accounting for bond damage, see Sect. 2.1 for de-
tails. It is worth noting that, while the internal variables in
question are amenable to direct measurement from mi-
cromechanical data, the plasticity models developed within
the framework of breakage mechanics cannot be consid-
ered true multiscale models such as those developed from
upscaling procedures of various kind, see for example the
monography of Fish [2014].

All the aforementioned constitutive models have been
developed under the assumption of linearized kinematics.
However, given the high deformability showed by cemented
soils with crushable grains under medium to high stress
levels, geometric non–linearity may play an important role
in some practical applications such as the modeling of
offshore foundations, piled foundations and underground
excavations. Furthermore, the accurate modeling of strain
localization processes, either in the form of shear or com-
paction bands, as well as of the post–localization behavior
of geotechnical structures may require finite deformation
kinematics. For these reasons, Rubin and Einav [2011] have
derived a large deformation version of the breakage model
for granular materials and, more recently, Monforte et al.
[2019] have extended to finite deformations a Modified
Cam–Clay model for bonded granular materials, capable
of dealing with the pathological mesh sensitivity typically
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observed in presence of strain localization effects by means
of a non–local formulation of the hardening laws.

The first objective of this work, is to extend the thermo-
dynamically–based approach of the theory of hyperplastic-
ity – as defined by Houlsby and Puzrin [2007] – to the finite
deformation regime by adopting a multiplicative split of the
deformation gradient into an elastic and a plastic part and
incorporating the concepts of breakage and damage into
the constitutive functions. In the derivation of the theory,
we will restrict ourselves to the case of isotropic materials,
an assumption consistent with the scalar nature of the
degradation–related internal variables. This choice may
appear rather restrictive in some cases, but can be justified
by the fact that the nature of the intergranular bonds is
often characterized by a rather non–directional character,
[Kavvadas et al., 1993, Kavvadas, 1994]. In addition, isotropy
allows to keep the mathematical structure of the consti-
tutive equations to an acceptable level of complexity in
view of the practical application of this approach to ad-
vanced geotechnical engineering practice, while preserving
its ability of reproducing most of the relevant features of
the materials under study. A specific finite–deformation
hyperplastic model for cemented sands and weak arena-
ceous rocks is proposed as an example of application of the
general theory, starting from the works of Tengattini et al.
[2014], Das et al. [2014].

In the solution of practical boundary value problems, the
availability of an accurate and efficient stress–point algo-
rithm for the local integration of the constitutive equations
in rate–form is of primary importance. As pointed out, for
example, by Hughes [1984], the integration of the consti-
tutive equation at the local level is the central problem of
computational plasticity, since in this procedure the consti-
tutive equation plays its main role. In addition, the accuracy
of the stress–point algorithm has a direct impact on the
overall results of the numerical simulation.

Many different stress–point algorithms have been pro-
posed for the finite element implementation of finite defor-
mation plasticity models, see, e.g. , Simo and Hughes [1998]
or de Souza Neto et al. [2011] for a general overview. In the
second part of this work we adopt a fully implicit predictor–
corrector algorithm based on the exponential mapping
[Simo, 1992], previously adopted in computational geome-
chanics by Borja and Tamagnini [1998], Callari et al. [1998],
Sanavia et al. [2002] among others. The peculiar feature of
the proposed algorithm is that it is entirely formulated in
the product space of elastic logarithmic principal strains
and internal state variables, thus allowing to circumvent
the need to express the yield function in stress space. More-
over the proposed algorithm is amenable to closed form
linearization and therefore allows to fully exploit the qua-
dratic convergence of the Newton algorithm in the global
equilibrium iterations.

The outline of the paper is as follows. In Sect. 2, the
degradation processes occurring in natural deposits of ce-
mented granular materials are illustrated and the approach
of breakage mechanics for obtaining the macroscopic in-
ternal variables quantifying the effects of grain breakage
and bond damage is briefly summarized. As a motivation

for the subsequent developments, in the same section the
small–strain formulation of the theory of hyperplasticity
with internal variables is presented in general form. In
Sect. 3 the infinitesimal theory is extended to the finite
deformation regime adopting a multiplicative decompo-
sition of the deformation gradient. In Sect. 4, an existing
hyperplastic model for cemented granular materials with
grain crushing is chosen as a suitable candidate to for the
extension to finite deformations. In view of practical appli-
cations, a fully implicit stress–point algorithm is proposed
for the local integration of the evolution equations. The
algorithm and its consistent linearization are presented in
Sects. 5 and 6, respectively. Some representative numerical
simulations, both at the element and at the boundary value
problem level, showing the importance of geometric non–
linearity and the capabilities of the stress–point algorithm
are provided in Sect. 7. Finally, some concluding remarks
and suggestions for further developments are provided in
Sect. 8.

Notation
In line with Terzaghi’s principle of effective stress, in

the following developments all stresses and stress–related
quantities are effective, unless otherwise stated. The usual
sign convention of soil mechanics (compression positive)
is adopted throughout. Both direct and index notations will
be used to represent vector and tensor quantities according
to convenience. Following standard notation, for any two
vectors v , w ∈R3 the dot product is defined as: v ·w = vi wi ,
and the dyadic product as: [v ⊗ w ]i j = vi w j . For any two
second–order tensors X ,Y ∈ L we define X ·Y = Xi j Yi j and

[X ⊗Y ]i j kl = Xi j Ykl . The quantity ‖X ‖ =p
X ·X denotes the

Euclidean norm of the second order tensor X . The symbol
∇v denotes the spatial gradient of the (spatial) vector field
v , while ∇s v represents its symmetric part. The symbol ∇X V
denotes the material gradient of the (material) vector field V
defined on the reference configuration. The symmetric and
antisymmetric parts of a second–order tensor A are denoted
with sym(A) and skw(A), respectively. When needed, any
symmetric second–order tensor T will be represented in its
spectral form, given by:

T =
3∑

A=1
TA n(A) ⊗n(A)

where TA (with A = 1,2,3) are the principal values of T
and n(A) the corresponding principal directions. According
to standard notations [see, e.g. , Simo and Hughes, 1998],
we denote the push–forward of a material vector or tensor
quantity to the spatial configuration with the operator φ∗(·),
and the pull–back of a spatial vector or tensor quantity to
the reference configuration with the operator φ∗(·).
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2. Fundamentals of infinitesimal
hyperplasticity for crushable,
cemented granular materials

2.1. Degradation processes in
coarse–grained soils and weak rocks

The mechanical behavior of natural sand deposits and
weak sedimentary rocks such as sandstones can be affected
by both mechanical and physical degradation processes oc-
curring at the grain scale. Among the first, we mention:

– grain fracture and crushing;
– mechanical degradation of intergranular bonds (or

soil destructuration, as sometimes this process is re-
ferred to in the geotechnical literature).

When the minerals constituting the grains and the inter-
granular bonds are sensitive to chemical aggression – i.e. ,
when dissolution phenomena can occur in relatively short
times, comparable to the typical lifetimes of civil engineer-
ing structures – degradation due to “weathering” may occur
in the form of:

– dissolution of weak depositional bonds by wetting of
the initially unsaturated solid skeleton;

– dissolution of strong diagenetic bonds formed by
mineral precipitation at the intergranular contacts;

– dissolution of the grains.

see Ciantia and Hueckel [2013], Ciantia et al. [2014, 2015].
Depositional bonds are formed by a mixture of very small

grains and seawater salts that precipitate into a meniscus–
shaped bond when water evaporates. They are present only
if the soil is non–saturated, and break when the precipitated
salt is dissolved by pore water (short–term debonding).
Diagenetic bonds typically originate from the precipitation
of crystals (say, calcite) at the intergranular contacts due
to changes in water pressure, temperature and pH, or by
pressure solution of grain minerals at the intergranular
contacts. Their mechanical and chemical degradation is
more difficult than in the case of depositional bonds, and
require significantly higher stress levels, as well as appro-
priate chemical composition of the pore water (long–term
debonding).

All the aforementioned processes affect both the strength
and the deformation behavior of the material and may in-
duce irreversible strains associated to permanent rearrange-
ments of the grains in the solid skeleton. In addition, grain
dissolution may be responsible for chemically–induced vol-
umetric strains [Ciantia et al., 2014, Tamagnini and Ciantia,
2016]. In this work, the attention will be focused on mechan-
ical degradation processes only, considering the solid skele-
ton as fully saturated or perfectly dry.

The quantitative description of the effects of grain break-
age and mechanical debonding at the macroscopic scale
can be tackled on physically–based grounds by approxi-
mating, at the microscopic level, the grains as equivalent
ideal spheres and the bonds as ideal cylinders of cement
material, connecting the grains one another. Under those
fairly standard assumptions, both degradation processes
can be quantified at the microscopic level by the changes

induced on the probability density distributions of grain
sizes and bond diameters by the imposed mechanical loads.

For non–cemented granular materials, this observation is
the starting point of the theory of breakage mechanics intro-
duced by Einav [2007a,b]. In breakage mechanics, the evolu-
tion of the probability density for each granulometric class is
provided by the non–dimensional fractional breakage index:

B := P (xg )−P0(xg )

Pu(xg )−P0(xg )
B ∈ [0,1] (1)

where P0(xg ), P (xg ) and Pu(xg ) are the initial, current and
ultimate probability densities associated to grains of diame-
ter xg , respectively.

A key point in breakage mechanics is the assumption of
fractional independence of B : although the three functions
P0, P and Pu depend on xg , the index B is independent of
grain diameter. This assumption has been verified by Einav
[2007a]. The upscaling of soil properties from micro– to
macroscale is based on the concept of statistical homoge-
nization, according to which the evaluation of macroscopic
properties is carried out using the probability density dis-
tribution of grain sizes as the weighting function of the
averaging process.

In view of the development of a macroscopic constitutive
theory for materials undergoing grain crushing, an impor-
tant application of the above concept is the case in which the
property in question is the Helmholtz free energy function of
the particle class of size xg : ψg =ψg (xg ,εe ). This function is
considered as the product of a reference free energy depend-
ing on elastic strain, ψg

r (εe ) and of an energy split function,
fψ(xg ), assumed by Einav [2007a] to be a quadratic function
of the grain size.

Statistical homogenization leads to the following macro-
scopic Helmholtz free energy function:

ψ(εe ,B) = νg (1−θg B)ψg
r (εe ) (2)

where νg is the volume fractions of the grains and θg , known
as grading index, is a material constant defined by:

θg := 1−

∫ xg M

xg m

x2
g Pu(xg )d(xg )∫ xg M

xg m

x2
g P0(xg )d(xg )

(3)

see Einav [2007a,b] for details. Note that, being the free
energy of the grains of size xg defined per unit volume
of grains, its macroscopic counterpart, defined per unit
volume of the porous medium, must include the volume
fraction of the grains as weighting factor.

In presence of intergranular bonds with given probability
density distributions P b

0 (xb) (initial), P b(xb) (current) and

P b
u (xb) (ultimate), Tengattini et al. [2014] have extended the

above concepts introducing a second scalar variable, the
bond damage index, given by:

D := P b(xb)−P b
0 (xb)

P b
u (xb)−P b

0 (xb)
D ∈ [0,1] (4)

The adoption of the assumption of fractional independence
of D and the use of the statistical homogenization over the
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bond population lead to the following contribution of bonds
to the total free energy of the granular material:

∆bψ(εe ,D) = νb(1−D)ψb
r (εe ) (5)

in which ∆bψ is the increment of the material free energy
due to the presence of bonds and νb their volume fraction.
In eq. (5) there is no counterpart for the grading index θg of
grains because, for a fully debonded material, P b

u (xb) = 0 for
all xb > 0.

Based on the results of eqs. (2) and (5), the two scalar
quantities B and D are the macroscopic state variables
which quantify the mechanical effects of grain crushing and
mechanical bond damage in a cemented granular material.
Provided that the initial, current and ultimate cumulative
grain and bond size distributions are known, both these
quantities can be computed. With the current progresses
made in the “in–situ” measurements of the geometric
features of solid grains and intergranular bonds at the mi-
croscale by means of X–ray tomography [see, e.g. , Viggiani
and Hall, 2012, and references therein] B and D are actually
measurable quantities throughout the entire deformation
process.

Note that the (macroscopic) elastic strain appearing in
the (microscopic) reference free energy functionsψg

r andψb
r

can be considered the same for both grains and bonds by
virtue of the assumption of strain compatibility introduced
in Tengattini et al. [2014], Tengattini [2015]. In these works,
εe is the infinitesimal macroscopic elastic strain. The exten-
sion of this approach to the finite deformation regime is ad-
dressed in Sect. 3.

2.2. Thermodynamics–based approach to
the theory of plasticity

The attempts to derive the evolution equations of the
infinitesimal theory of rate–independent plasticity from
basic thermodynamics principles can be traced back to the
early works of the French school [Moreau, 1970, Halphen
and Nguyen, 1975, Germain et al., 1983]. Important con-
tributions to the understanding of the thermo–mechanics
of structural materials have been provided, e.g. , by Ziegler
[1983], Ziegler and Wehrli [1987], Maugin [1992], Reddy and
Martin [1993], Han and Reddy [1999]. The advantages of
ensuring thermodynamic consistency when dealing with
the inelastic behavior of geomaterials have been empha-
sized by Houlsby [1981] and Collins and Houlsby [1997],
in view of the potential drawbacks associated with purely
phenomenological modeling of materials featuring stress–
dependent stiffness, non–associative behavior and dilatant
plastic flow. Significant contributions to the development
of infinitesimal elastoplastic models for soils within the
framework of continuum thermo–mechanics have been
given, for example, by Modaressi et al. [1994], Houlsby and
Puzrin [2000], Puzrin and Houlsby [2001], Collins and Kelly
[2002], Collins and Hilder [2002], Collins and Muhunthan
[2003], Einav and Puzrin [2004], DeSimone and Tamagnini
[2005], Einav et al. [2007].

A detailed account of the approach to plasticity the-
ory based on thermodynamic principles, with particular
reference to the theory of hyperplasticity, in which all the

evolution equations for the state variables are derived from
two potential functions (free energy function and dissi-
pation function) is given in the monograph of Houlsby
and Puzrin [2007]. In this section, the key points of the
application of infinitesimal hyperplasticity to the modeling
of crushable, cemented granular materials incorporating
micromechanically–based internal variables (as defined in
Sect. 2) are briefly summarized.

2.3. Free energy function
In the framework of infinitesimal elastoplasticity, we

assume the customary additive decomposition of the total
strain tensor into an elastic, reversible part and an inelastic
part:

εe = ε−εp (6)

By limiting the set of state variables, S , to the elastic strain
tensor εe , the breakage index B and the damage index D , we
postulate the existence of a Helmholtz free energy function
per unit volume of the form:

ψ(S ) =ψ(εe ,B ,D)

= νg (1−θg B)ψg
r (εe )+νb(1−D)ψb

r (εe ) (7)

obtained by adding the contributions of grains and bonds
given by eqs. (2) and (5).

As a consequence of the principle of material frame in-
difference [see, e.g. , Simo and Hughes, 1998], the functions
ψ

g
r and ψb

r must depend on εe only through its invariants.
Choosing the principal values εe

A (with A = 1,2,3) of εe as a
suitable set of 3 independent invariant quantities, we have:

ψ
g
r (εe ) = ψ̂g

r (εe
A) ψb

r (εe ) = ψ̂b
r (εe

A) (A = 1,2,3) (8)

As an alternative, the volumetric and deviatoric elastic
strains, defined as:

εe
v := tr(εe ) εe

s :=
√

2

3
‖dev(εe )‖ dev(εe ) := εe − 1

3
εe

v 1

can be chosen as arguments of ψg
r and ψb

r , assuming that
there is no dependence ofψ on the third invariant of εe , see,
e.g. , Houlsby and Puzrin [2007, Ch. 9].

2.4. Dissipation function
For isothermal processes, the second principle of ther-

modynamics requires that the dissipation function D , de-
fined as:

D :=σ · ε̇− ψ̇> 0 (9)

is non–negative. Taking into account the definition of free
energy function given in the previous section, and introduc-
ing the set of generalized stresses K = {χ,χB ,χD }, defined as:

χ= ∂ψ

∂εe χB =−∂ψ
∂B

χD =−∂ψ
∂D

(10)

we have:

D =σ · ε̇−{
χ · (ε̇− ε̇p)−χB Ḃ −χD Ḋ

}
= (
σ−χ) · ε̇+χ · ε̇p +χB Ḃ +χD Ḋ > 0 (11)

For this inequality to hold for any possible non–dissipative
processes, for which ε̇p = 0, Ḃ = 0 and Ḋ = 0, we must have:

σ=χ= ∂ψ

∂εe (12)
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and the following reduced dissipation inequality must hold:

D =σ · ε̇p +χB Ḃ +χD Ḋ > 0 (13)

Eq. (13) suggests the following functional dependence for
the dissipation function D on both the set S of the state
variables and the set of dissipative flows F := {ε̇p , Ḃ ,Ḋ}:

D(S ,F ) =D
(
εe ,B ,D , ε̇p , Ḃ ,Ḋ

)
(14)

To describe the behavior of a rate–independent material, we
postulate that the dissipation function D is homogeneous of
degree one in the elements of F . Euler’s theorem for homo-
geneous functions then requires that:

D = ∂D

∂ε̇p · ε̇p + ∂D

∂Ḃ
Ḃ + ∂D

∂Ḋ
Ḋ (15)

By introducing the set of generalized dissipative stresses
K := {χ,χB ,χD }, defined as:

χ= ∂D

∂ε̇p χB = ∂D

∂Ḃ
χD = ∂D

∂Ḋ
(16)

eq. (15) can be rewritten as:

D =χ · ε̇p +χB Ḃ +χD Ḋ (17)

Comparing eqs. (13) and (17) we observe that generalized
stresses and generalized dissipative stresses must fulfill the
following relation:(

χ−χ) · ε̇p + (
χB −χB

)
Ḃ + (

χD −χD

)
Ḋ = 0 (18)

This equality is trivially satisfied if Ziegler’s orthogonality
conditions [Houlsby and Puzrin, 2007] are assumed:

χ=χ χB =χB χD =χD (19)

Eq. (19) is a sufficient condition for eq. (18) to hold, but not
a necessary one. Therefore, Ziegler’s orthogonality condi-
tion must be considered as a (weak) restrictive constitutive
assumption, yet compatible with realistic descriptions of
many classes of granular materials characterized by fric-
tional dissipation, see e.g. , Collins and Houlsby [1997],
Houlsby and Puzrin [2007].

2.5. Yield function and evolution equations
Eq. (17) requires that the (degenerate) partial Legendre

transformation of D with respect to the arguments in F is a
function y , defined yield function, such that:

γ̇y(S ,K ) :=χ · ε̇p +χB Ḃ +χD Ḋ −D = 0 (20)

for dissipative processes, i.e. , when the elements of F are
non–zero. In the left–hand side of eq. (20), the scalar γ̇> 0 is
the plastic multiplier. The set:

E := {
(εe ,B ,D ,χ,χB ,χD ) ∈S ×K

∣∣ y(εe ,B ,D ,χ,χB ,χD ) < 0
}

is the elastic domain of the material, where the plastic multi-
plier is zero and all the processes are non dissipative (ε̇p = 0,
Ḃ = 0, Ḋ = 0). The boundary of E:

∂E := {
(εe ,B ,D ,χ,χB ,χD ) ∈S ×K∣∣ y(εe ,B ,D ,χ,χB ,χD ) = 0

}
is the yield surface, on which γ̇ may be positive and irre-
versible processes may occur.

From eq. (20) the following evolution equations for the el-
ements of F can be obtained:

ε̇p = γ̇ ∂y

∂χ
(S ,K ) = γ̇Qσ (S ,K ) (21a)

Ḃ = γ̇ ∂y

∂χB
(S ,K ) = γ̇QB (S ,K ) (21b)

Ḋ = γ̇ ∂y

∂χD
(S ,K ) = γ̇QD (S ,K ) (21c)

Eq. (21a) is the standard (associative) flow rule for the plastic
strain rate, while eqs. (21b) and (21c) provide the (associa-
tive) hardening laws for the internal variables B and D . It
is worth noting that the associativity of the flow rule (21a)
holds in the generalized dissipative stress space. Thus, this
result does not prevent the possibility of modeling non–
associative plastic flow in standard Cauchy stress space, see
Collins and Houlsby [1997], Houlsby and Puzrin [2007].

The yield function, y , and the flow directions, Qσ, QB and
QD , are functions of the state variables and of generalized
dissipative stresses. By exploiting Ziegler’s orthogonality
principle (19) and the constitutive equations (10), providing
the elements of K as functions of the state variables S , we
can define the counterparts of the yield function and of the
flow directions in the state variable space as follows:

y(S ,K ) = y[S ,K (S )] = y∗(S ) (22a)

Qσ(S ,K ) =Qσ[S ,K (S )] =Q∗
σ(S ) (22b)

QB (S ,K ) =QB [S ,K (S )] =Q∗
B (S ) (22c)

QD (S ,K ) =QD [S ,K (S )] =Q∗
D (S ) (22d)

The corresponding evolution equations for the state vari-
ables εe , B and D are given by:

ε̇e = ε̇− γ̇Q∗
σ

(
εe ,B ,D

)
(23a)

Ḃ = γ̇Q∗
B

(
εe ,B ,D

)
(23b)

Ḋ = γ̇Q∗
D

(
εe ,B ,D

)
(23c)

Given the history of the total strain, and thus of ε̇, eqs. (23)
can be integrated in time to provide the time histories of the
state variables at each material point. Then, the stress tensor
σ and the generalized stresses χB and χD can be obtained
from eqs. (10) by simple function evaluation.

3. Extension to finite deformation
multiplicative plasticity

3.1. Strain decomposition
Let X be the position of a macroscopic material point –

an REV containing a sufficient number of grains to be rep-
resentative of the macroscopic behavior of the material – in
the reference configuration B of the body at time t = 0 and
let:

x(X , t ) =φ(X , t ) (24)

be the position occupied by the same material point in the
spatial configuration St occupied by the body at time t > 0.
The key point in finite deformation multiplicative plasticity
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Figure 1. Multiplicative decomposition and interme-
diate configuration.

is the assumption of a product decomposition of the defor-
mation gradient:

F :=∇Xφ(X , t ) = ∂φ

∂X
(25)

into a reversible (elastic) part, F e and an irreversible (plastic)
part, F p , in the form:

F = F e F p (26)

see, e.g. , Lee [1968], Simo and Hughes [1998], Borja [2013].
An essential feature of the assumption (26) is the intro-

duction of the concept of intermediate configuration, rela-
tive to which the elastic response of the material is defined,
see Fig. 1. From a phenomenological point of view, (F e )−1

can be interpreted as the local deformation which occurs to
the neighborhood Ox of x when the material is unloaded
back to the reference stress state. It is worth noting that the
local configurations for each material point of B are, in gen-
eral, not compatible. In addition, the decomposition (26) is
not unique as an arbitrary rigid body rotation can be su-
perposed on the intermediate configuration without alter-
ing the total deformation gradient. However, the orientation
of the (local) intermediate configuration is not relevant if we
restrict our theory to isotropic materials.

3.2. Free energy function
Due to the assumption of isotropy, the set S of state vari-

ables is given by the reversible part of the deformation via
the left elastic Cauchy–Green deformation tensor:

be := F e F eT =
3∑

A=1
be

An(A) ⊗n(A) =
3∑

A=1

(
λe

A

)2 n(A) ⊗n(A) (27)

the grain breakage index B and the bond damage index D :

S := {
be ,B ,D

}
In eq. (27), be is represented in its spectral decomposition,
where the eigenvectors n(A) (A = 1,2,3) provide the princi-
pal directions of be while be

A = (λe
A)2 are the corresponding

principal values. The quantities λe
A , known as principal elas-

tic stretches, are the principal values of F e .
The free energy function per unit reference volume is then

assumed as:

ψ(S ) = ng (1−θg B)ψg
r (be )+nb(1−D)ψb

r (be ) (28)

where ng = Jνg and nb = Jνb are the Lagrangian volume
fractions of grains and bonds, respectively, and J = det(F )
is the Jacobian determinant of the deformation.

As a consequence of the principle of material frame
indifference and the assumption of isotropy, the functions
ψ

g
r and ψb

r must depend on be only through its invariants.
Choosing the principal values be

A of be as a suitable set of 3
independent invariant quantities, we have:

ψ
g
r (be ) = ψ̂g

r (be
A) ψb

r (be ) = ψ̂b
r (be

A) (A = 1,2,3) (29)

In view of the following derivations, it is useful to evaluate
the objective time rate of the free energy function ψ as pro-
vided by eq. (28). We have:

ψ̇= ∂ψ

∂be · ḃ
e + ∂ψ

∂B
Ḃ + ∂ψ

∂D
Ḋ (30)

Considering that, by the multiplicative decomposition, F e =
F F p−1 and defining the plastic right Cauchy–Green defor-
mation tensor as C p := F pT F p , it follows that:

be = F C p−1F T =φ∗(C p−1) (31)

i.e. , be is the push–forward to the spatial configuration of
the inverse of C p . Exploiting the identity (31), we have the
following important result, [see Simo, 1992, for details]:

ḃ
e = l be +be l T +Lv [be ] (32)

where l = Ḟ F−1 =∇v is the spatial velocity gradient, and:

Lv [be ] = F
{

d

d t

(
C p−1)}F T =φ∗

{ d

d t

(
φ∗be)}

is the Lie derivative of the elastic left Cauchy–Green tensor.
It is easy to show that Lv [be ] is related to the time rate

of plastic deformations. Let the elastic and plastic velocity
gradients be defined as:

l e := Ḟ e F e−1 L
p

:= Ḟ p F p−1 (33)

and let the spatial plastic velocity gradient l p be the push–
forward to the spatial configuration of the tensor L

p
, defined

on the intermediate configuration:

l p = F e L
p

F e−1 = l − l e (34)

Then, the following relation holds between Lv [be ] and l p

[see Simo, 1998, Ch. 36]:

Lv [be ] =−2 sym
(
l p be) (35)

Hence, the third term in the expression for the time rate of
be in eq. (32) accounts for the changes of be induced by the
development of inelastic deformations.

The definition of l p in (34) leads naturally to the following
notions of plastic rate of deformation, d p , and plastic spin,
ŵ p tensors:

d p := sym
(
l p)

ŵ p := skw
(
l p)

(36)

In order to construct a plasticity theory, both components of
the plastic velocity gradients need to be specified by suitable
flow rules. In view of the isotropic nature of the material be-
havior, we will assume in the following that the plastic spin
is always equal to zero, and l p = d p .

Inserting eqs. (32) and (35) in eq. (30), and considering
that:

∂ψ

∂be · sym
(
d p be)= ∂ψ

∂be · (d p be)
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due to the symmetry of ∂ψ/∂be , and that:

∂ψ

∂be · (l be)+ ∂ψ

∂be · (be l T )= (
2
∂ψ

∂be be
)
·
(

l + l T

2

)
since the two tensors be and ∂ψ/∂be commute as a conse-
quence of material isotropy, we obtain:

ψ̇=
(
2
∂ψ

∂be be
)
·d −

(
2
∂ψ

∂be be
)
·d p + ∂ψ

∂B
Ḃ + ∂ψ

∂D
Ḋ (37)

where d = sym(l ) is the rate of deformation tensor.

3.3. Dissipation function
For isothermal processes, the second principle of ther-

modynamics requires that the dissipation function D per
unit reference volume, is non–negative:

D :=τ ·d − ψ̇> 0 (38)

In the above equation, the tensor τ := Jσ is the Kirchhoff
stress tensor. Taking into account the result of eq. (37) and
introducing the set of generalized stresses K = {χ,χB ,χD },
defined as:

χτ = 2
∂ψ

∂be be χB =−∂ψ
∂B

χD =−∂ψ
∂D

(39)

we have:

D = (
τ−χτ

) ·d +χτ ·d p +χB Ḃ +χD Ḋ > 0 (40)

For this inequality to hold for any possible non–dissipative
processes, for which d p = 0, Ḃ = 0 and Ḋ = 0, we must have:

τ=χτ = 2
∂ψ

∂be be (41)

and the following reduced dissipation inequality must hold:

D =τ ·d p +χB Ḃ +χD Ḋ > 0 (42)

This equation suggests the following functional dependence
for the dissipation function D on both the set S of the state
variables and the set of dissipative flows F := {d p , Ḃ ,Ḋ}:

D(S ,F ) =D
(
be ,B ,D ,d p , Ḃ ,Ḋ

)
(43)

Again, to describe the behavior of a rate–independent mate-
rial, we postulate that the dissipation function D is homo-
geneous of degree one in the elements of F . Thus, Euler’s
theorem for homogeneous functions requires that:

D = ∂D

∂d p ·d p + ∂D

∂Ḃ
Ḃ + ∂D

∂Ḋ
Ḋ (44)

By introducing the set of generalized dissipative stresses
K := {χτ,χB ,χD }, defined as:

χτ =
∂D

∂d p χB = ∂D

∂Ḃ
χD = ∂D

∂Ḋ
(45)

eq. (44) can be rewritten as:

D =χτ ·d p +χB Ḃ +χD Ḋ (46)

Comparing eqs. (42) and (46) we observe that generalized
stresses and generalized dissipative stresses must fulfill the
following relation:(

χτ−χτ
) ·d p + (

χB −χB

)
Ḃ + (

χD −χD

)
Ḋ = 0 (47)

This equality is trivially satisfied if Ziegler’s orthogonality
conditions are assumed:

χτ =χτ χB =χB χD =χD (48)

as in the small deformation case, see eq. (19) and the associ-
ated remarks.

3.4. Yield function and evolution equations
The homogeneity of degree one of the dissipation func-

tion in the elements of F , implies that, as in the linearized
kinematics setting, the (degenerate) partial Legendre trans-
formation of D with respect to d p , Ḃ and Ḋ provides the
yield function of the material in the generalized dissipative
stresses space:

γ̇y(S ,K ) :=χτ ·d p +χB Ḃ +χD Ḋ −D = 0 (49)

As in eq. (20), the scalar γ̇ > 0 is the plastic multiplier. The
set:

E := {
(be ,B ,D ,χτ,χB ,χD ) ∈S ×K

∣∣
y(be ,B ,D ,χτ,χB ,χD ) < 0

}
is the elastic domain of the material, where the plastic mul-
tiplier is zero and all the processes are non–dissipative (d p =
0, Ḃ = 0, Ḋ = 0). The boundary of E:

∂E := {
(be ,B ,D ,χτ,χB ,χD ) ∈S ×K

∣∣
y(be ,B ,D ,χτ,χB ,χD ) = 0

}
is the yield surface, on which γ̇ may be positive and irre-
versible processes may occur.

From eq. (49), a standard argument provides the associa-
tive flow rule for d p and the associative hardening laws for
B and D :

d p = γ̇ ∂y

∂χτ
(S ,K ) = γ̇Qτ (S ,K ) (50a)

Ḃ = γ̇ ∂y

∂χB
(S ,K ) = γ̇QB (S ,K ) (50b)

Ḋ = γ̇ ∂y

∂χD
(S ,K ) = γ̇QD (S ,K ) (50c)

The result of eq. (35) and the flow rule (50a) provide the ex-
pression of the Lie derivative of be consistent with the as-
sumed yield function:

Lv [be ] =−2sym
(
d p be)=−2γ̇ sym

(
Qτbe) (51)

It is worth noting that – as for the small deformations case –
the associativity of the flow rule, eq. (50a), holds in the gen-
eralized dissipative stress space. Thus, this result does not
prevent the possibility of modeling non–associative plastic
flow in Kirchhoff or Cauchy stress spaces. This represents
a significant improvement with respect to the isotropic
finite deformation plasticity theory derived by Simo [1992]
starting from the principle of maximum dissipation, which
imposes the associativity of plastic flow in Kirchhoff stress
space.

The yield function, y , and the flow directions, Qτ, QB and
QD , are functions of the state variables and of generalized
dissipative stresses. By exploiting Ziegler’s orthogonality
principle (48) and the constitutive equations (39), providing
the elements of K as functions of the state variables S , we
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can define the counterparts of the yield function and of the
flow directions in the state variable space as follows:

y(S ,K ) = y[S ,K (S )] = y∗(S ) (52a)

Qτ(S ,K ) =Qτ[S ,K (S )] =Q∗
τ (S ) (52b)

QB (S ,K ) =QB [S ,K (S )] =Q∗
B (S ) (52c)

QD (S ,K ) =QD [S ,K (S )] =Q∗
D (S ) (52d)

The corresponding evolution equations for the state vari-
ables be , B and D are given by:

ḃ
e = l be +be l T −2γ̇Q∗

τ

(
be ,B ,D

)
be (53a)

Ḃ = γ̇Q∗
B

(
be ,B ,D

)
(53b)

Ḋ = γ̇Q∗
D

(
be ,B ,D

)
(53c)

In the RHS of eq. (53a) the isotropy of the yield function and
of the elastic constitutive equation allows to replace the term
sym

{
Q∗
τbe} with Q∗

τbe , since Q∗
τ and be commute.

As in the small deformation setting, given the deforma-
tion of the bodyB, eqs. (53) can be integrated in time to pro-
vide the time histories of the state variables at each material
point. Then, the Kirchhoff stress tensor τ and the general-
ized stresses χB and χD can be obtained from the constitu-
tive equations (39) by simple function evaluation.

4. Application: a frictional
hyperplastic finite deformation
model for natural geomaterials

In this section, the general expressions for the hyperplastic
constitutive equations derived in Sect. 3 are specialized to
a specific class of natural geomaterials, namely, cemented
granular materials such as weakly cemented sands, sand-
stones or calcarenites.

In developing the different constitutive functions, the
works of Einav and coworkers on breakage mechanics of
granular materials [Einav, 2007a,b, Nguyen and Einav, 2009]
as well as the more recent contributions of Tengattini et al.
[2014] and Das et al. [2014] have been used as a starting
point.

4.1. Free energy function and generalized
stresses

In the general expression (28) for the free energy function,
the effects of grain breakage B and bond damage D are ac-
counted for by the coefficients (1− θg B) and (1−D) origi-
nating from statistical homogenization. The dependence of
ψ on the elastic deformations is concentrated in the two ref-
erence functions ψg

r (be ) and ψb
r (be ), which depend on be

through its invariants.
Rather than using the principal values of be as suggested

by eq. (29), it is expedient to adopt as arguments of the refer-
ence free energy functions the three invariants provided by
the logarithmic elastic principal stretches, defined as:

εe
A := ln(λe

A) (A = 1,2,3) (54)

The rationale for this choice will be provided in the forth-
coming Sect. 5.

Splitting additively the volumetric and deviatoric contri-
butions to the reference free energies for both grains and
bonds, we can write:

ψ
g
r (εe

A) =ψg
r ,v (εe

v )+ψg
r ,s (εe

s ) (55a)

ψb
r (εe

A) =ψb
r ,v (εe

v )+ψb
r ,s (εe

s ) (55b)

in which εe
v and εe

s are the elastic logarithmic volumetric and
deviatoric strains defined as:

εe
v := ε̂e ·δ εe

s :=
√

2

3
êe · êe (56)

with:

ε̂e :=


εe

1

εe
2

εe
3

 δ :=


1

1

1

 êe := ε̂e − 1

3
εe

vδ=


εe

1 −εe
v /3

εe
2 −εe

v /3

εe
3 −εe

v /3


In the choice of the functions ψg

r ,v , ψg
r ,s , ψb

r ,v and ψb
r ,s dif-

ferent approaches have been proposed. For unbonded or
weakly bonded granular materials, whose stiffness is signifi-
cantly affected by the mean effective stress, a power law can
be assumed for the functions ψg

r ,v (εe
v ) and ψb

r ,v (εe
v ), see, for

example, Einav [2007b], Nguyen and Einav [2009].
For weak rocks such as sandstones and calcarenites,

whose elastic stiffness is affected by the stress state to a
much lesser degree, a convenient choice is to adopt qua-
dratic functions for the volumetric components of the
reference free energies, of the form:

ψ
g
r ,v = 1

2
K g (εe

v )2 ψb
r ,v = 1

2
K b(εe

v )2 (57)

see Nguyen and Einav [2009]. These quadratic expressions
give rise to a linear dependence of the mean Kirchhoff effec-
tive stress on the logarithmic volumetric strain. In eq. (57),
K g and K b are two material constants representing the bulk
stiffnesses of grains and of intergranular bond bridges, re-
spectively. Consistently with this choice, we adopt quadratic
expressions also for the deviatoric components of the refer-
ences free energies, as, for example, in Das et al. [2014]:

ψ
g
r ,s =

3

2
Gg (εe

s )2 ψb
r ,s =

3

2
Gb(εe

s )2 (58)

where Gg and Gb are two additional material constants rep-
resenting the shear stiffnesses of grains and of intergranular
bond bridges, respectively.

Using the expressions (28), (57) and (58), the constitutive
equation (41) yields:

τ=
3∑

A=1
τA n(A) ⊗n(A) =

3∑
A=1

∂ψ

∂εe
A

n(A) ⊗n(A) (59)

where:

τA = ∂ψ

∂εe
A

= K
g b
εe

v +2G
g b

(
εe

A − 1

3
εe

v

)
(60)

is the A–th principal value of τ, and:

K
g b

(B ,D) := ng (1−θg B)K g +nb(1−D)K b (61a)

G
g b

(B ,D) := ng (1−θg B)Gg +nb(1−D)Gb (61b)
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represent the volume–averaged bulk and shear stiffnesses
of the granular medium, decreasing monotonically as grain
breakage and bond damage evolve towards the final damage
state with B = D = 1. The details of the derivation of eq. (59)
are provided in Appendix A.

Eq. (59) shows that the principal directions of τ are, as
expected for isotropic elasticity, the same of the elastic left
Cauchy–Green tensor be , and that the relations between the
principal values of Kirchhoff stress and the principal elastic
logarithmic strains, provided by eq. (60), are strikingly simi-
lar to the elastic constitutive equations between σ and εe of
an isotropic material in the small deformation setting.

By introducing the vector τ̂ := {τ1,τ2,τ3}T of princi-
pal Kirchhoff stresses, eq. (60) can be rewritten in a more
compact vector form as:

τ̂= K
g b
εe

v δ+2G
g b

êe = D̂
e
ε̂e (62)

where the elastic stiffness matrix in principal stress space,
D̂

e
, is given by:

D̂
e

:=
(
K

g b − 2

3
G

g b
)
δ⊗δ+2G

g b
I 3 (63)

in which I 3 is the 3×3 identity matrix and δ := {1,1,1}T .
Finally, from eqs. (28), (39), (57) and (58), we obtain the

following expressions for the generalized stressesχB andχD :

χB = ngθ
g
{

1

2
K g (εe

v )2 + 2

3
Gg (εe

s )2
}

(64)

χD = nb

{
1

2
K b(εe

v )2 + 2

3
Gb(εe

s )2
}

(65)

Note that being ψ a linear function of B and D , χB and χD
depend only on be through its logarithmic elastic strain in-
variants εe

v and εe
s .

4.2. Dissipation and yield functions
A suitable choice for the dissipation function D for an

isotropic cohesive–frictional material is provided by the
work of Tengattini et al. [2014]. In this work, we adapt this
dissipation function to the finite deformation regime, re-
placing Cauchy mean stress with Kirchhoff mean stress
p := tr(τ)/3:

D =
√

D2
p,v +D2

p,s +D2
B +D2

D (66)

where:

Dp,v = (
p +pt

)√EBC

χB

1

(1−B)sinωB
d p

v (67a)

Dp,s = M
{

p +pt (1−D)
}

d p
s (67b)

DB =
√

EBCχB

(1−B)cosωB
Ḃ (67c)

DD =
√

EDCχD

(1−D)
Ḋ (67d)

are the components of the dissipation function associated to
the plastic volumetric deformation, plastic distortional de-
formation, grain breakage and bond damage, respectively.

In eqs. (67a) and (67b), the invariant quantities:

d p
v := tr(d p ) d p

s :=
√

2

3
dev(d p ) ·dev(d p )

are the volumetric and deviatoric components of the plas-
tic rate of deformation tensor d p . The scalar coefficients pt ,
M , EBC , EDC and ωB are material constants, whose physi-
cal interpretation is discussed in Sect. 4.5. As compared to
the original dissipation function of Tengattini et al. [2014],
the only minor difference is in the function Dp,v , where the
mean stress p is replaced by the quantity (p +pt ) to prevent
the volumetric plastic flow from becoming singular at p = 0,
see eq. (74).

Let:

pχ := 1

3
tr(χτ) qχ :=

√
3

2
dev(χτ) ·dev(χτ) (68)

be the first and second invariants of the generalized dissipa-
tive stress χτ, work–conjugated to d p

v and d p
s , respectively;

eqs. (45), (66) and (67) then yield:

pχ = ∂D

∂d p
v

= 1

Γp

Dp,v

D
(69a)

qχ = ∂D

∂d p
s

= 1

Γq

Dp,s

D
(69b)

χB = ∂D

∂Ḃ
= 1

ΓB

DB

D
(69c)

χD = ∂D

∂Ḋ
= 1

ΓD

DD

D
(69d)

with:

Γp,v =
(
∂Dp,v

∂d p
v

)−1

= (1−B)sinωB

p +pt

√
χB

EBC
(70a)

Γp,s =
(
∂Dp,s

∂d p
s

)−1

= 1

M
[
p +pt (1−D)

] (70b)

ΓB =
(
∂DB

∂Ḃ

)−1

= (1−B)cosωB

√
1

χB EBC
(70c)

ΓD =
(
∂DD

∂Ḋ

)−1

= (1−D)

√
1

χD EDC
(70d)

Given the definition of dissipation function provided by
eq. (66) and the results of eqs. (69), we can obtain the partial
Legendre transform of D , i.e. , the yield function in the
S ×K space, by observing that:

y(S ,K ) =
(
Dp,v

D

)2

+
(
Dp,s

D

)2

+
(
DB

D

)2

+
(
DD

D

)2

−1

= (
Γp,v pχ

)2 + (
Γp,s qχ

)2 + (
ΓBχB

)2 + (
ΓDχD

)2 −1 = 0
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After substituting the expressions for the coefficients Γ of
eq. (70), the full expression for the yield function is obtained:

y = χB (1−B)2 sin2ωB

EBC

(
pχ

p +pt

)2

+ (1−B)2 cos2ωB

EBC

χ2
B

χB

+ (1−D)2

EDC

χ2
D

χD
+

q2
χ

M 2
[
p +pt (1−D)

]2 −1 = 0 (71)

4.3. Flow rule in generalized dissipative
stress space

In view of eq. (71), the plastic flow direction Qτ can be
computed as follows, with the use of the chain rule for
derivation of composite functions:

Qτ =
∂y

∂χτ
= ∂y

∂pχ

∂pχ
∂χτ

+ ∂y

∂qχ

∂qχ
∂χτ

(72)

where:

∂pχ
∂χτ

= 1

3
1

∂qχ
∂χτ

= 3

2

1

qχ
dev(χτ) (73)

and:

∂y

∂pχ
= 2χB (1−B)2 sin2ωB

EBC

pχ
(p +pt )2 (74)

∂y

∂qχ
= 2qχ

M 2
[
p +pt (1−D)

]2 (75)

Collecting the results in eqs. (72)–(75), we obtain:

Qτ =
2χB (1−B)2 sin2ωB

3EBC

pχ
(p +pt )2 1

+ 3

M 2
[
p +pt (1−D)

]2 dev(χτ) (76)

The hardening functions QB and QD can be also determined
by differentiating eq. (71) with respect to χB and χD , obtain-
ing:

QB = ∂y

∂χB
= 2(1−B)2 cos2ωB

EBC

χB

χB
(77)

QD = ∂y

∂χD
= 2(1−D)2

EDC

χD

χD
(78)

From the expressions in eqs. (76)–(78), the associative flow
rule and hardening laws of eq. (50) specialize in the present
case to:

d p = γ̇
{

2χB (1−B)2 sin2ωB

3EBC

pχ
(p +pt )2 1

+ 3 dev(χτ)

M 2
[
p +pt (1−D)

]2

}
(79a)

Ḃ = γ̇
{2(1−B)2 cos2ωB

EBC

χB

χB

}
(79b)

Ḋ = γ̇
{2(1−D)2

EDC

χD

χD

}
(79c)

subject to the Kuhn–Tucker complementarity conditions:

y(S ,K )6 0 γ̇> 0 γ̇ y(S ,K ) = 0 (80)

4.4. Yield function and flow directions in
state variable space

The yield function provided by eq. (71) as well as the flow
directions Qτ, QB and QD , appearing in the evolution equa-
tions (79), depend on the state variables be , B and D and on
the generalized dissipative stresses χτ, χB and χD .

By assuming the validity of Ziegler’s orthogonality condi-
tion (χτ = τ, χB = χB and χD = χD ) and taking into account
that the generalized stresses are functions of be , B and
D through the constitutive equations (59), (64) and (65),
we can reformulate the evolution problem for the state
variables in the state variables space as follows:

d p = γ̇Q∗
τ

(
be ,B ,D

)
(81a)

Ḃ = γ̇Q∗
B

(
be ,B ,D

)
(81b)

Ḋ = γ̇Q∗
D

(
be ,B ,D

)
(81c)

subject to the Kuhn–Tucker complementarity conditions:

y∗ (
be ,B ,D

)
6 0 γ̇> 0 γ̇ y∗ (

be ,B ,D
)= 0 (82)

where:

Q∗
τ =

2χB (1−B)2 sin2ωB

3EBC

p

(p +pt )2 1

+ 3 s

M 2
[
p +pt (1−D)

]2 (83a)

Q∗
B = 2(1−B)2 cos2ωB

EBC
(83b)

Q∗
D = 2(1−D)2

EDC
(83c)

In the above equations s = dev(τ) is the deviatoric part of
Kirchhoff stress tensor, and the yield function is provided by:

y∗ = χB (1−B)2 sin2ωB

EBC

(
p

p +pt

)2

+ χB (1−B)2 cos2ωB

EBC

+ χD (1−D)2

EDC
+ q2

M 2
[
p +pt (1−D)

]2 −1 = 0 (84)

In deriving eqs. (83) and (84) the identities pχ = p and qχ = q
have been used between the invariants ofχτ andτ. The rele-
vant definition for q can be obtained from eq. (68), replacing
dev(χτ) with s.

It is worth noting that the evolution equations (81), to-
gether with the algebraic constraints (82) define a theory
of hyperplasticity formulated in elastic strain space, rather
than in stress space, following an approach which, for fi-
nite deformation plasticity applications in geomechanics,
has been pioneered by Borja and Tamagnini [1998]. In this
respect, the Kirchhoff stress tensor τ and the generalized
stresses χB and χD can be considered as dependent vari-
ables, which can be obtained from eqs. (59), (64) and (65) by
a straightforward function evaluation.
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The yield surface of eq. (84) can be easily represented in
stress invariants space by considering that the generalized
stresses χB and χD can be cast as functions of p and q
through the elastic constitutive equations:

εe
v = p

K
g b

εe
s =

q

3G
g b

easily derived from eq. (60) or (62). Substituting these
equations in eqs. (64) and (65), we get y∗(εe

v ,εe
s ,B ,D) =

y∗(p, q ,B ,D).
In the asymptotic conditions of full grain breakage and

complete bond damage (B = D = 1), the yield surface re-
duces to the Drucker–Prager cone of a cohesionless soil:

y∗ = q −M p = 0 (85)

In all the other circumstances, the yield surface in stress
space has a drop–like shape and it is closed on the positive
part of the p axis, as shown in Figs. 2 and 3. The yield surface
crosses the positive part of the p axis at an apparent pre–
consolidation pressure pc given by the following implicit
equation (see Appendix B):

Ξ2 = 1−p2
c

{
fB sξB

(
pc

pc +pt

)2

+ fBcξB + fDξD

}
= 0 (86)

for pc > 0 and any values of B < 1 and D < 1. Eq. (86) can be
solved in closed form only in the particular case of pt = 0.
Otherwise, a numerical procedure such as Newton’s method
is required to find pc . Plastic yielding under isotropic com-
pression is induced by grain breakage and bond damage.
When one of B or D are relatively low, the changes induced
in pc by the increase of the other state variable are relatively
limited, see Figs. 2a and 3. However, for an almost com-
pletely debonded material (D = 0.9), pc increases very fast
with grain breakage, producing a behavior under isotropic
compression similar to that of normally consolidated clays,
see Fig. 2b. In practice, B and D increase simultaneously
during plastic loading processes, and the expected response
of the model in isotropic compression is typically similar to
the one shown in Fig. 2b.

The flow rule in eqs. (81) and (83a) allows to determine
the dilatancy D := −d p

v /d p
s of the material as a function of

p, q , B and D (see Appendix B):

D=−M 2
(

p

q

)[
p +pt (1−D)

p +pt

]2

fB s
(
ξB p2 +ηB q2) (87)

The sign of D is provided by the mean stress p: the mate-
rial contracts (D < 0) when p > 0 and dilates (D > 0) other-
wise, with a critical state line (D = 0) coinciding with the q
axis. The plastic flow directions along the yield surface are
shown, for constant B and D values, in Fig. 4. In the figure,
contractant flow is represented by red arrows, while dilatant
flow is shown with blue arrows. For the particular set of ma-
terial constants adopted in generating the data in Fig. 4, the
plastic flow in the low stress range is almost isochoric, while
significant contractancy occurs along the yield surface “cap”
at high mean stresses.

The impossibility of reproducing a dilatant behavior for
positive (compressive) mean stresses could represent a lim-
itation for the applications of the model to a large class of
granular materials [Tengattini, 2015, Ch. 4]. This limitation

(a)

(b)

Figure 2. Yield function in (p,q,B) space: a) D = 0.1;
b) D = 0.9. Material constants from Set 1 of Tab. 1.

Figure 3. Yield function in (p,q,D) space for B = 0.0.
Material constants from Set 1 of Tab. 1.

could be circumvented by introducing an isotropic back–
stress depending on plastic deformations via a suitable
modification of the free energy function, see e.g. , Collins
[2003], or with a modification of the dissipation function, as
in the works of Tengattini et al. [2016] and Houlsby [2019],
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Figure 4. Yield function in (p,q) space for B = 0.0
and D = 0.0. Arrows provide the local direction of the
plastic flow. Contractant flow is represented with red
arrows, dilatant flow with blue arrows. Material con-
stants from Set 1 of Tab. 1.

who uses an indicator function to impose a unilateral dila-
tancy constraint. In this work, mainly oriented towards the
modeling of crushable cemented granular materials with
a relatively open microstructure and showing a collapsing
behavior upon compressive stress paths – such as, for ex-
ample, the Italian calcarenites – this version of the model
can still be considered adequate. Further modifications
to the present formulation could be introduced without
difficulties.

4.5. Model calibration
The proposed model – as its small deformation counter-

part of Tengattini et al. [2014], Das et al. [2014] – is fully char-
acterized by 12 material constants:

– the grading index θg and the Lagrangian porosi-
ties ng and nb (dimensionless), which can be
determined from the initial (reference) state of the
material;

– the grains bulk and shear moduli K g and Gg (di-
mensions [FL−2]);

– the bonds bulk and shear moduli K b and Gb (di-
mensions [FL−2]);

– the friction coefficient M (dimensionless), linked to
the friction angle of the material at a fully damaged
state (B = D = 1);

– the mean isotropic Kirchhoff stress at yield under
isotropic tension, pt (dimensions [FL−2]);

– the critical breakage and bond damage energies per
unit volume, EBC and EDC (dimensions [FL−2]), see
Einav [2007b], Tengattini et al. [2014];

– the coupling angle ωB ∈ (0,π/2), controlling the
balance between the grain breakage and plastic
volumetric dissipation effects, with the role of plas-
tic volumetric dissipation increasing with ωB , as
well as the material tendency to plastic volumetric
compaction.

The grading index θg can be determined from the grain size
distributions measured on the intact and fully damaged
states of the grain phase. The volume fraction of the grains
must add to the volume fraction of the bond to give the total
volume fractions of solids: ng +nb = ns = 1−n, where n is
the Lagrangian porosity of the material. Although n can be
easily measured, the determination of the individual vol-
ume fractions requires a detailed microstructural analysis,
with microscopy or X–ray tomography imaging.

The calibration of the elastic constants can be performed
indirectly from the measurements of the pre–yield response
of the material upon isotropic compression and during the
deviatoric stage of a drained triaxial compression test. These
two testing conditions allow the determination of the av-

erage moduli K
g b

and G
g b

. Knowing the volume fractions
ng and nb as well as the pre–yield state of the material in
terms of B and D (typically, B = D = 0), is not sufficient to

obtain K g , K b , Gg and Gb from K
g b

and G
g b

. However, the
knowledge of the mineralogic composition of grains and in-
tergranular bonds can provide a reasonable estimate of the
ratios K g /K b and Gg /Gb , from which the individual micro-
scopic elastic constants can be estimated.

In Appendix B it is shown that, in the low stress range, the
yield surface can be approximated quite well by a Drucker–
Prager cone of equation:

q = Mapp
(
p +pt ,app

)
(88)

where:

Mapp = M

(
1

1+µ2

)3/2

' M

pt ,app = pt (1−D)(1+µ2) ' pt (1−D)

In the above relations, the term 1+µ2 ' 1 when, as it is of-
ten the case, µ2 ¿ 1. Based on this observation, the constant
M could be measured as the slope of the line interpolating
the yield states in the q : p plane, measured in drained tri-
axial compression tests performed at low confining stresses.
If the material can be considered as fully bonded (D = 0) at
the start of the same tests, the value of the constant pt can
be obtained as the intercept of the same interpolation line
with the negative part of the p axis. Another possible way to
obtain experimental information on pt is to observe that, for
a cohesive–frictional material with constant friction angleφ,
the uniaxial tensile strengthσt is linked to pt by the relation:

pt = σt

2

(1+ sinφ)

sinφ
=σt

(3+2M)

3M
(89)

as, under TX compression:

M = 6sinφ

3− sinφ
⇔ sinφ= 3M

(6+M)

The tensile strength of the material can easily be determined
by routine tests such as the Brazilian tensile strength test.

As far as the breakage and bond damage critical energies
are concerned, it would be tempting to link them to the
fundamental properties of grains and cement bonds at the
microscale (e.g. , grain crushing pressure). Unfortunately,
the presence of cement bonds in the intact material makes
this task very difficult. An alternative is to derive EBC and
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Figure 5. Effect of critical breakage and bond dam-
age energies on isotropic yield stress pc , for B = 0.0 and
D = 0.1. Material constants from Set 1 of Tab. 1.

EDC indirectly, associating their values to the macroscopic
behavior of the material. The two critical energies control
the evolution rate of B and D – the larger EBC and EDC , the
slower the increase of B and D towards their asymptotic
values, see eqs. (83b) and (83c). Thus, the measurement of
the change of B and D with accumulated (plastic) defor-
mations would provide a way to estimate these constants.
However, this would only be possible if micromechanical
measurements – say, X–ray CT scans of the specimen taken
“in–situ” during the test – are available.

A possible alternative is to link the values of EBC and EDC

to the mean effective stress at first yield in isotropic com-
pression – i.e. , the preconsolidation pressure pc provided
by eq. (86). Fig. 5 shows how the critical energies affect pc for
an almost intact material. As expected, pc increases mono-
tonically with both EBC and EDC . If EBC is low, pc is almost
insensitive to EDC . The effect of critical bond damage energy
increases as EBC increases. The preconsolidation pressure
tends to reach an asymptotic value for large values of EBC .
The asymptotic limit increases with increasing EDC . Assum-
ing that the other material constants are known, a graphical
representation like Fig. 5 can help in obtaining an indication
of the most appropriate values for EBC and EDC for a given
material, provided that pc at first yield has been measured
and a reasonable estimate of the ratio EDC /EBC can be ob-
tained, based, for example, on the mineralogical composi-
tion of the grains and the bonds.

The last constant ωB controls the plastic volumetric
strain rate, and thus the dilatancy D of the material, for
yield states located on the “cap” of the yield surface. This
can be seen by looking at the plastic flow directions com-
puted for 3 different values of ωB in the range between 20◦
and 60◦, shown in Fig. 6. As ωB increases, the contractancy
(−D) predicted at a given stress ratio q/p increases, as in-
dicated by the clockwise rotation of the plastic flow vectors.
Note that the different yield surfaces shown in the figure
are not identical, as ωB has some influence, albeit relatively
small, on the size and shape of the yield surface, see eq. (84).

(a)

(b)

(c)

Figure 6. Effect of coupling angle on plastic flow di-
rection for B = D = 0.0: a) ωB = 20◦; b) ωB = 40◦; c) ωB
= 60◦. Material constants from Set 1 of Tab. 1.

Based on this observation, an estimate of ωB could be pro-
vided by a stress–dilatancy plot (D vs. q/p) obtained from a
series of drained TX compression tests at different confining
pressures, designed in such a way to touch the yield surface
cap at different q/p values.
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It is worth noting that all the constants EBC , EDC and ωB

affect both the initial value of the preconsolidation pres-
sure pc and the stress–dilatancy behavior of the material,
although to a different extent. Therefore, the procedures
suggested for their indirect determination could require
some iterations in order to find the set of data which fits the
observed behavior best.

5. Numerical integration of the
evolution equations

In order to apply the proposed model to the solution of rel-
evant engineering problems by means of the Finite Element
method, it is necessary to define a strategy which allows the
integration of the constitutive equations in rate–form at the
material point level for a given history of the deformation.

More precisely, let I = ⋃N
n=0 [tn , tn+1] a partition of the

time interval of interest into time steps. It is assumed that at
time tn ∈ I the state of the material Sn = {

be
n ,Bn ,Dn

}
and

the deformation gradient F n are known at any Gauss point
in the adopted finite element discretization. Let:

un+1(xn) :=φn+1(xn)−φn

be the (given) relative displacement vector in the configura-
tionφn(B). Then, the deformation gradient at time tn+1 can
be evaluated as:

F n+1 = f n+1F n f n+1 = 1+ ∂un+1

∂xn
(90)

the second order tensor f n+1 = ∂φn+1/∂xn being the rela-
tive deformation gradient of the incremental motion carry-
ing the body B from the spatial configuration Sn to Sn+1.
The computational problem to be addressed is then the up-
date of the state variables:

be
n+1 → b̂

e (
f n+1;be

n ,Bn ,Dn
)

(91a)

Bn+1 → B̂
(

f n+1;be
n ,Bn ,Dn

)
(91b)

Dn+1 → D̂
(

f n+1;be
n ,Bn ,Dn

)
(91c)

through the integration of the system of ordinary differential
equations defining the inelastic response of the material:

ḟ = l f (92a)

ḃ
e = l be +be l T −2γ̇Q∗

τbe (92b)

Ḃ = γ̇Q∗
B (92c)

Ḋ = γ̇Q∗
D (92d)

y∗ 6 0 , γ̇> 0 , γ̇ y∗ = 0 (92e)

subjected to the initial conditions:

f
∣∣

t=tn
= 1 be ∣∣

t=tn
= be

n B
∣∣

t=tn
= Bn D

∣∣
t=tn

= Dn (93)

In eqs. (92), the flow directions Q∗
τ , Q∗

B and Q∗
D are given by

eqs. (83). The development of a fully implicit integration al-
gorithm for the solution of this problem is described in the
following sections 5.1–5.4.

Box 1. Operator split of the evolution problem.

Problem 1 Problem 2
(elastic predictor) (plastic corrector)

Evolution
equations

ḟ = l f

ḃ
e = l be +be l T

Ḃ = 0

Ḋ = 0

ḟ = 0

ḃ
e =−2γ̇Q∗

τbe

Ḃ = γ̇Q∗
B

Ḋ = γ̇Q∗
D

Initial
conditions

be (t = tn ) = be
n

B(t = tn ) = Bn

D(t = tn ) = Dn

be = be,tr
n+1

B = B tr
n+1

D = Dtr
n+1

Constraints none

y∗(be ,B ,D)6 0

γ̇> 0

y∗(be ,B ,D)γ̇= 0

5.1. Operator split of the evolution problem
For the numerical integration of the evolution equations

(92), we proceed along standard lines in computational plas-
ticity by adopting the operator split shown in Box 1, sug-
gested by the additive structure of eq. (92b).

The computational strategy is to solve Problem 1 first,
with initial conditions provided by eq. (93), obtaining the
so–called trial solution S tr

n+1. Then, if the constraints of
Problem 2 are violated, solve Problem 2 using the trial solu-
tion as initial conditions. The attractiveness of this strategy
stands in the geometric interpretation which can be given
to each Problem, as detailed below.

5.2. Problem 1: elastic predictor
The evolution equations of Problem 1, also known as

elastic predictor problem, can be obtained from the original
problem by assuming that no dissipative processes take
place (i.e. , γ̇= 0) and ignoring the constraint placed on the
state variables by the yield function.

From a geometric point of view, during the elastic predic-
tor stage the update of the current configuration from Sn to
Sn+1 takes place at fixed intermediate configuration (mod-
ulo a rigid body rotation), with F p,tr

n+1 = F p
n . Thus we have:

F n+1 = f n+1F n = F e,tr
n+1F p

n ⇒ F e,tr
n+1 = f n+1F e

n (94)

From this last result and the (trivial) evolution equations for
B and D of the elastic predictor problem, the complete trial
state is obtained:

be,tr
n+1 = f n+1be

n f T
n+1 B tr

n+1 = Bn D tr
n+1 = Dn (95)

It is worth noting that, due to its formulation in terms of
kinematics, the solution of the elastic predictor problem
provided by eqs. (95) is exact. The trial value of be at the
end of the step is just the geometric update (actually, the
push–forward) of be

n to the current configuration Sn+1 via
the relative deformation gradient.
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For the trial state, Kirchhoff stress τ and the generalized
stresses χB and χD are provided by eqs. (59), (64) and (65):

τtr
n+1 =

3∑
A=1

τtr
A,n+1 n(A),tr

n+1 ⊗n(A),tr
n+1

=
3∑

A=1

(
∂ψ

∂εe
A

)tr

n+1

n(A),tr
n+1 ⊗n(A),tr

n+1 (96)

χtr
B ,n+1 = ngθ

g
{

1

2
K g (εe,tr

v ,n+1)2 + 2

3
Gg (εe,tr

s,n+1)2
}

(97)

χtr
D ,n+1 = nb

{
1

2
K b(εe,tr

v ,n+1)2 + 2

3
Gb(εe,tr

s,n+1)2
}

(98)

where:(
∂ψ

∂εe
A

)tr

n+1

= (K
g b

)tr
n+1ε

e,tr
v ,n+1

+2(G
g b

)tr
n+1

(
εe,tr

A,n+1 −
1

3
εe,tr

v ,n+1

)
(99)

and:

(K
g b

)tr
n+1 := K

g b
(B tr

n+1,D tr
n+1)

(G
g b

)tr
n+1 :=G

g b
(B tr

n+1,D tr
n+1)

In the above equations, n(A),tr
n+1 is the A–th unit eigenvector of

be,tr
n+1; εe,tr

A,n+1 is the corresponding logarithmic principal elas-

tic strain, and εe,tr
v ,n+1 and εe,tr

s,n+1 are the logarithmic volumet-
ric and deviatoric elastic strains, respectively.

5.3. Problem 2: plastic corrector
If the trial state S tr

n+1 satisfies the constraint posed by the
Kuhn–Tucker conditions, i.e. :

(y∗)tr
n+1 := y∗ (

be,tr
n+1,B tr

n+1,D tr
n+1

)
6 0

then the trial state is the exact update of the material state
we had been looking for. Otherwise, the intermediate con-
figuration needs to be modified in order to restore the con-
sistency with the yield surface:

y∗
n+1 = y∗ (

be
n+1,Bn+1,Dn+1

)= 0 (100)

where be
n+1, Bn+1 and Dn+1 are obtained as the solution of

the differential–algebraic Problem 2, also known as plastic
corrector problem. Since ḟ = 0 in this case, Problem 2 is for-
mulated on a fixed current configuration Sn+1.

The evolution equations of Problem 2 must be integrated
numerically, adopting an implicit strategy such as the Back-
ward Euler formula. In particular, the structure of the evolu-
tion equation for be suggest the use of the following expo-
nential approximation [Simo, 1992]:

be
n+1 = exp

{−2∆γn+1Q∗
τ,n+1

}
be,tr

n+1 (101)

where ∆γn+1 is the increment of the plastic multiplier asso-
ciated to the plastic deformations, to be determined as part
of the solution.

Using the Backward Euler algorithm to integrate the evo-
lution equations for B and D yields:

Bn+1 = B tr
n+1 +∆γn+1Q∗

B ,n+1 (102)

Dn+1 = D tr
n+1 +∆γn+1Q∗

D ,n+1 (103)

In principle,the system of 9 non–linear algebraic equations
(100)–(103) can be solved to provide the 9 unknowns be

n+1,
Bn+1, Dn+1 and ∆γn+1. However, the solution of the plastic
corrector problem can be significantly simplified by exploit-
ing the isotropy of the material response, as shown in the
following section.

5.4. Plastic corrector in principal logarithmic
elastic strains space

Due to the assumption of material isotropy and Ziegler’s
orthogonality condition, the tensor Q∗

τ,n+1 has the same
principal directions of be

n+1, see eqs. (59) and (83a). There-
fore, the spectral decomposition of the tensors be

n+1, Q∗
τ,n+1

and be,tr
n+1 appearing in eq. (101) read:

be
n+1 =

3∑
A=1

(
λe

A,n+1

)2
n(A)

n+1 ⊗n(A)
n+1 (104a)

Q∗
τ,n+1 =

3∑
A=1

Q∗
A,n+1 n(A)

n+1 ⊗n(A)
n+1 (104b)

be,tr
n+1 =

3∑
A=1

(
λe,tr

A,n+1

)2
n(A),tr

n+1 ⊗n(A),tr
n+1 (104c)

where the quantities λe,tr
A and n(A),tr denote the trial princi-

pal elastic stretches (eigenvalues of F e,tr) and the unit eigen-
vectors of be,tr, respectively, while the scalars Q∗

A,n+1 are the
principal values of Q∗.

Rewriting eq. (101) as:

exp
{
2∆γn+1Q∗

τ,n+1

}
be

n+1 = be,tr
n+1

and incorporating the spectral decompositions (104), it easy
to show that:

a) the principal directions of be
n+1 coincide with the

(known) principal directions of be,tr
n+1:

n(A)
n+1 = n(A),tr

n+1 (A = 1,2,3) (105)

b) the principal values of the three tensors be
n+1, Q∗

τ,n+1

and be,tr
n+1 are related by the following equations:(

λe
A,n+1

)2 = exp
{−2∆γn+1Q∗

A,n+1

}(
λe,tr

A,n+1

)2
(106)

with A = 1, 2 or 3.

The result in eq. (106) is particularly relevant since, taking
the natural logarithm of both sides, we obtain:

εe
A,n+1 = εe,tr

A,n+1 −∆γn+1Q∗
A,n+1

or, in vector notation:

ε̂e
n+1 = ε̂e,tr

n+1 −∆γn+1Q̂
∗
n+1 (107)
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Box 2. Plastic corrector problem.

(1) Determine the trial principal elastic stretches λe,tr
A,n+1 and

the principal eigenvectors n(A),tr
n+1 via the spectral decompo-

sition of be,tr
n+1.

(2) Set:

n(A)
n+1 = n(A),tr

n+1 (A = 1,2,3)

(3) Solve the system of nonlinear algebraic equations:

ε̂e
n+1 = ε̂e,tr

n+1 −∆γn+1Q̂
∗

(ε̂e
n+1,Bn+1,Dn+1)

Bn+1 = B tr
n+1 +∆γn+1Q∗

B (ε̂e
n+1,Bn+1,Dn+1)

Dn+1 = D tr
n+1 +∆γn+1Q∗

D (ε̂e
n+1,Bn+1,Dn+1)

ŷ∗
n+1 = ŷ∗(ε̂e

n+1,Bn+1,Dn+1) = 0

via Newton’s method, to obtain the updated state variables
at the end of the step.

(4) Recover be
n+1, τn+1, χB ,n+1 and χD ,n+1 using the spectral

decomposition and the hyperelastic constitutive equations:

be
A,n+1 = exp

(
2εe

A,n+1

)
be

n+1 =
3∑

A=1
be

A,n+1,n(A)
n+1 ⊗n(A)

n+1

τA,n+1 =
(
∂ψ

∂εe
A

)
n+1

τn+1 =
3∑

A=1
τA,n+1,n(A)

n+1 ⊗n(A)
n+1

χB ,n+1 =−
(
∂ψ

∂B

)
n+1

χD ,n+1 =−
(
∂ψ

∂D

)
n+1

where:

εe,tr
A,n+1 := ln(λe,tr

A,n+1) ε̂e,tr :=


εe,tr

1

εe,tr
2

εe,tr
3

 Q̂
∗

:=


Q∗
τ,1

Q∗
τ,2

Q∗
τ,3


The set of 6 non–linear algebraic equations provided by
eqs. (100), (102), (103) and (107) can then be solved using
Newton’s method to obtain the updated state at the end of
the step, ε̂e

n+1, Bn+1, Dn+1, and the plastic multiplier incre-
ment ∆γn+1, as shown in Box 2. The details of the numerical
solution of the plastic corrector problem are provided in
Appendix C.

As noted by Simo [1992], the use of the exponential al-
gorithm in connection with the choice of formulating the
plastic corrector problem in principal logarithmic elastic
strain space leads to an algebraic system of equations which
are formally similar to the Generalized Backward Euler algo-
rithm of infinitesimal plasticity [see, e.g. Tamagnini et al.,
2002, Borja et al., 2003].

6. Consistent linearization of the
integration algorithm

One of the main advantages of the implicit generalized
Backward Euler algorithm presented in Sect. 5 is that it is

amenable to closed form linearization, which is an impor-
tant feature whenever Newton’s method is used to solve
iteratively the discretized equilibrium equations at the
global level.

Let:

G (φ,η) =Gint(φ,η)−Gext =
∫
B
τ(φ)·(∇η)dV −Gext = 0 (108)

be the variational form of the equilibrium equations, i.e. ,
the principle of virtual work, expressing the equality be-
tween the virtual work done by the Kirchhoff stress field
over the virtual deformation field and the virtual work of the
external forces Gext for any kinematically admissible virtual
displacement field η.

The computation of the Jacobian of the internal force
vector in a typical time step is based on the discretization
of the linearized form of Gint with respect to a infinitesimal
perturbation δu of the current deformationφ:

DuGint(φ,η)[δu] =
∫
B

{∇sη · (c̃ ∇sδu)
}

dV

+
∫
B

{
τ · (∇δu)T (∇η)

}
dV (109)

in which c̃ is the so–called algorithmic tangent stiffness ten-
sor, given for the case at hand by the following expression
[see, e.g. Simo, 1998]:

c̃ =
3∑

A=1

3∑
B=1

d̂AB m A ⊗mB −
3∑

A=1
2τA m A

+ ∑
A 6=B

{
τA(λe,tr

B )2 −τB (λe,tr
A )2

(λe,tr
A )2 − (λe,tr

B )2

}
M AB (110)

where:

m A := n(A) ⊗n(A) m AB := n(A) ⊗n(B) mB A := n(B) ⊗n(A)

M (AB) := m AB ⊗m AB +m AB ⊗mB A

and the quantities d̂AB , given by:

d̂AB := ∂τA

∂εe,tr
B

(111)

are the components of the (3 × 3) matrix d̂ := ∂τ̂/∂ε̂e,tr of
tangent moduli in principal strain space. In presence of
repeated eigenvalues for be,tr, the third term on the RHS
of eq. (110) becomes singular. The singularity can be easily
eliminated as shown in Ogden [1984], Ch. 6.

For the case at hand, the exact calculation of the matrix
d̂ is possible only if, during the current time step, the load-
ing process is elastic. When the plastic deformations occur,
the Kirchhoff stress tensor is provided as a function of the
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state variables whose values at the end of the step are deter-
mined numerically via the algorithm of Box 2. In such condi-
tions, the evaluation of d̂ requires the linearization of the in-
tegration algorithm and proceeds as follows. From the elas-
tic constitutive equation (62) we have:

d̂
(k)
n+1 =

(
∂τ̂

∂ε̂e

)(k)

n+1

(
∂ε̂e

∂ε̂e,tr

)(k)

n+1

+
(
∂τ̂

∂B

)(k)

n+1

(
∂B

∂ε̂e,tr

)(k)

n+1
+

(
∂τ̂

∂D

)(k)

n+1

(
∂D

∂ε̂e,tr

)(k)

n+1
(112)

By considering that:(
∂τ̂

∂ε̂e

)(k)

n+1
=

(
∂2ψ

∂ε̂e ⊗∂ε̂e

)(k)

n+1
=: (D̂

e
)(k)

n+1 (113a)

(
∂τ̂

∂B

)(k)

n+1
=

(
∂2ψ

∂ε̂e∂B

)(k)

n+1
=: (D̂

e
B )(k)

n+1 (113b)

(
∂τ̂

∂D

)(k)

n+1
=

(
∂2ψ

∂ε̂e∂D

)(k)

n+1
=: (D̂

e
D )(k)

n+1 (113c)

where D̂
e

, D̂
e
B and D̂

e
D are the elastic and coupling matri-

ces of the material, respectively, eq. (112) can be rewritten in
compact form as:

d̂
(k)
n+1 = K̂

e(k)
n+1

(
∂x

∂ε̂e,tr

)(k)

n+1
(114)

in which:

x (k)
n+1 :=



(ε̂e )(k)
n+1

B (k)
n+1

D (k)
n+1

∆γ(k)
n+1


K̂

e(k)
n+1 :=

[
D̂

e
D̂

e
B D̂

e
D 0(3×1)

](k)

n+1
(115)

The derivative ∂x/∂ε̂e,tr measures the variation in the con-
verged solution of the iteration algorithm used to solve the
plastic corrector problem for an infinitesimal change in the
relative displacement gradient f n+1, and thus in ε̂e,tr

n+1. This
quantity can be obtained by linearizing the plastic corrector
problem equations in Box 2.

Let x (k),tr
n+1 := {(ε̂e,tr)T ,B tr,D tr,0}(k)T

n+1 be the trial value of so-
lution vector x and let:

g (k)
n+1 := x (k),tr

n+1 −R (k)
n+1 =



(ε̂e )(k)
n+1 +∆γ(k)

n+1 (Q̂
∗

)(k)
n+1

B (k)
n+1 −∆γ(k)

n+1(Q∗
B )(k)

n+1

D (k)
n+1 −∆γ(k)

n+1(Q∗
D )(k)

n+1

(y∗)(k)
n+1


(116)

the difference between x (k),tr
n+1 and the residual vector R (k)

n+1
of eq. (138), i.e. , the only part of the residual vector which
actually depends on the problem unknowns. Then the gov-
erning equations of the plastic corrector problem in Box 2
can be recast as follows:

g
(

x (k)
n+1

)
= x (k),tr

n+1 (117)

Deriving both sides of eq. (117) with respect to ε̂e,tr, we have:(
∂g

∂x

)(k)

n+1

(
∂x

∂ε̂e,tr

)(k)

n+1
=

(
∂x tr

∂ε̂e,tr

)(k)

n+1
(118)

Noting that: (
∂g

∂x

)(k)

n+1
=−

(
∂R

∂x

)(k)

n+1
=−J (k)

n+1 (119)

(
∂x tr

∂ε̂e,tr

)(k)

n+1
=

 I 3

0(3×3)

=: P (120)

where J is the Jacobian matrix of eq. (142) of Appendix C,
and considering that this matrix is non–singular if the plastic
corrector problem is well–posed, we obtain:(

∂x

∂ε̂e,tr

)(k)

n+1
=−(

J−1)(k)
n+1 P (121)

and, finally:

d̂
(k)
n+1 =−K̂

e(k)
n+1

(
J−1)(k)

n+1 P (122)

The evaluation of the RHS of eq. (122) is relatively easy as
the Jacobian matrix has already been computed in the iter-
ative solution of the local plastic corrector problem and its
components are given in Appendix C.

7. Numerical examples
In this section, a series of numerical examples are presented
to demonstrate the relevance of geometric non–linearity for
the model discussed in Sect. 4 and the efficiency and accu-
racy of the integration algorithm presented in Sect. 5.

All the simulations have been performed adopting the
three sets of material constants listed in Tab. 1. The data of
Set 1 are taken from Das et al. [2014] for the Gravina cal-
carenite, the only difference being the volume fractions ng

and nb , which have been evaluated assuming an initial void
ratio e0 = 1.15 and a ratio between ng /nb equal to 4. Set 2
differs from Set 1 only for the values of the critical breakage
and damage energies, taken as 50% of the original values
to simulate a material with weaker grains and intergranular
bonds. In Set 3, only the critical bond damage energy has be
reduced by 50%. Whenever the scope of the simulation is to
highlight the effects of a specific constant on the material
response, the values adopted for this constant are explicitly
provided.

7.1. Element tests
A first series of numerical simulations has been con-

ducted on “element tests” imposing a homogeneous defor-
mation to a single soil element. The complete set of element
test simulations is provided in Tab. 2.

The group of 7 simulations labeled “ax” refer to a series of
oedometric compression tests with zero radial displacement
(ur = ux = uz = 0) and axial shortening (−ua =−uy ) increas-
ing at constant rate from 0 to 30% of the reference specimen
height H . In all the tests, the initial state in the reference con-
figuration has been set to p0 (Kirchhoff mean stress) = 200.0
kPa, q0 (Kirchhoff deviatoric stress) = 0.0 kPa, B0 = D0 = 0.0
and e0 = 1.15.
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Table 1. Material constants sets for calcarenite rock
adopted in the numerical simulations.

θg ng nb K g Gg K b

[–] [–] [–] [kPa] [kPa] [kPa]

Set 1 0.622 0.372 0.093 1.00e5 7.55e4 1.00e5

Set 2 0.622 0.372 0.093 1.00e5 7.55e4 1.00e5

Set 3 0.622 0.372 0.093 1.00e5 7.55e4 1.00e5

Gb M pt EBC EDC ωB

[kPa] [–] [kPa] [kJ/m3] [kJ/m3] [deg]

Set 1 7.55e4 1.62 185.2 15.0 18.0 78.0

Set 2 7.55e4 1.62 185.2 7.5 9.0 78.0

Set 3 7.55e4 1.62 185.2 15.0 9.0 78.0

Table 2. Program of single element simulations.
Note: AX–SD = axisymmetric compression, small de-
formations; AX–FD = axisymmetric compression, fi-
nite deformations; PS–FD = plane strain compression,
finite deformations; OED = oedometric compression
tests; ISO = isoerror maps tests.

run no. material type ux /H uy /H note

ax001 Set 1 AX–SD 0.00 -0.30 OED

ax101 Set 1 AX–FD 0.00 -0.30 OED

ax002 Set 2 AX–SD 0.00 -0.30 OED

ax102 Set 2 AX–FD 0.00 -0.30 OED

ax103a–c Set 1(∗) AX–FD 0.00 -0.30 OED

iso01 to
iso06

Set 1 PS–FD -5.0e-4 -5.0e-4÷
-1.6e-2

ISO

iso07 to
iso12

Set 1 PS–FD -1.0e-3 -5.0e-4÷
-1.6e-2

ISO

iso13 to
iso18

Set 1 PS–FD -2.0e-3 -5.0e-4÷
-1.6e-2

ISO

iso19 to
iso24

Set 1 PS–FD -4.0e-3 -5.0e-4÷
-1.6e-2

ISO

iso25 to
iso30

Set 1 PS–FD -8.0e-3 -5.0e-4÷
-1.6e-2

ISO

iso31 to
iso36

Set 1 PS–FD -1.6e-2 -5.0e-4÷
-1.6e-2

ISO

(*) Simulations performed with different values of ωB .

Tests ax001 (small deformations, SD) and ax101 (finite
deformations, FD) have been performed with material con-
stants of Set 1 of Tab. 1. The compressibility curves obtained
in the two simulations, in terms of Cauchy axial stress σa

vs. normalized axial shortening −ua/H of the specimen,
are shown in Fig. 7. The two simulations appear almost

Figure 7. Oedometric compression tests ax001–
ax101: compressibility curves for small and finite de-
formations.

coincident up to the yield point, which is reached at about
2% axial shortening. Then the two solutions rapidly diverge,
the FD one showing a much larger apparent stiffness than
the SD one.

Although this result is to be expected, given that in the
SD setting the current configuration is always assumed
coincident with the reference one, it is important to note
that the differences between the two solutions are non neg-
ligible already for axial shortenings as small as 5%. This is
a consequence of the collapsible nature of the calcarenite,
which, due to its large porosity and the presence of inter-
granular bonds, is characterized by a large compressibility
after yield, under isotropic or one–dimensional compres-
sion conditions. A consequence of this observation is that
the calibration of the model from experimental results
from tests conducted to this large levels of axial shortening
would result in the overestimation of material stiffness if the
prediction of the model response is made assuming linear
kinematics.

The stress paths followed by the soil element during the
imposed one–dimensional deformation loading are shown
in the Cauchy stress invariants space in Figs. 8a,b. Note that
the Cauchy stress invariants p and q are related to the corre-
sponding Kirchhoff stress invariants p and q by the relations
p = p/J and q = q/J . In small deformations, the two quanti-
ties coincide as J = 1.

In both simulations, the initial (elastic) part of the stress
path is linear up to the first yield point on the initial yield
surface (shown in green in the figure). Afterwards, the stress
path rotates clockwise up to the point on the yield surface
where the plastic flow direction is consistent with the im-
posed kinematic constraint of zero lateral deformation. Just
after the first yield, the material is almost in a neutral loading
condition, then, as the stress path rotate, the plastic defor-
mations increase substantially. Due to the purely kinematic
nature of the imposed boundary conditions, the stress paths
after first yield in the SD and FD simulations are not identi-
cal, as a close observation of Fig. 8 reveals. This explains why
the tangent (oedometric) stiffnesses after yield are slightly
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(a)

(b)

Figure 8. Oedometric compression tests ax001–
ax101: stress paths for a) small deformations; b) finite
deformations.

different in the two simulations. At large axial shortenings,
the asymptotic K0 condition is reached in both SD and FD
simulations. The extent of the stress paths in Cauchy stress
space is obviously different, with much larger mean and de-
viatoric stresses at the end of the test in the FD case. How-
ever, the final value of K0, about 0.38, is exactly the same in
both cases.

The evolution of the internal variables B and D with axial
shortening is shown in Fig. 9. As expected for a material with
grains and bonds of the same chemical composition, bond
damage and grain breakage occur simultaneously, although
D increases at a much faster rate than B . Surprisingly, in this
case, geometric non–linearity plays only a minor role in the
grain breakage and bond damage processes.

To explore the effect of critical breakage and damage en-
ergies on the material response, the oedometric tests of sim-
ulations ax001 and ax101 have been repeated with material
Set 2 (simulations ax002 and ax102 of Tab. 2), with EBC and
EDC values reduced to 50% of those of Set 1.

The compressibility curves and the evolutions of the in-
ternal variables B and D with axial shortening for the two

Figure 9. Oedometric compression tests ax001–
ax101: evolution of breakage and damage indices for
small and finite deformations.

Figure 10. Oedometric compression tests ax101–
ax102: effect of EBC and EDC on the compressibility
curves.

Figure 11. Oedometric compression tests ax101–
ax102: effect of EBC and EDC on the evolution of
breakage and damage indices.
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Figure 12. Oedometric compression tests ax101–
ax103: effect of ωB on the evolution of breakage and
damage indices.

FD simulations ax101 and ax102 are shown in Figs. 10 and
11, respectively. By decreasing EBC and EDC , the size of the
initial yield surface is reduced significantly (see Sect. 4.5),
and at the same time, the rate at which the internal variables
converge to their final asymptotic values (B = D = 1) is in-
creased. In simulation ax102, the larger softening associated
to a more rapid breakage of particles and damage of bonds
gives rise to a very soft response after first yield, which oc-
curs at a smaller axial stress. In this particular case, a small
snap–trough effect is visible in the compressibility curve just
after yield. Upon continued plastic loading, the more rapid
increase of the internal state variables gives rise to a faster
increase of the yield surface size as compared to the simula-
tion ax101. This is clearly visible in the reduced slope of the
one–dimensional “virgin compression” curve for simulation
ax102.

Simulations ax103a,b,c have been performed with mate-
rial Set 1, as ax101, but with different values of the coupling
angle ωB – equal to 60◦ (ax103a), 40◦ (ax103b) and 20◦
(ax103c), respectively – to explore the effect of this con-
stant on the predicted response. As ωB controls the relative
importance of plastic volumetric compaction and grain
breakage, the rate at which B converges to 1 is increased
as ωB decreases for the same amount of volumetric com-
paction, see Fig. 12. The change of ωB affects also the
evolution of bond damage D with material compaction, but
to a much lesser extent and in the opposite way, being the
rate of increase of bond damage slower for smaller values of
ωB .

Fig. 13 shows the four different compressibility curves for
the different coupling angles. While ωB has only a minor ef-
fect on the vertical stress at first yield, the post–yield stiff-
ness of the material is strongly affected. The smaller ωB , the
larger is the increase in axial stress associated to a given in-
crement of axial deformation. This is a consequence of the
faster increase of brakage index B , which in turns controls
the size of the yield locus for one–dimensional compression
paths, see Fig. 2.

Figure 13. Oedometric compression tests ax101–
ax103: effect of ωB on the compressibility curves.

Figure 14. Oedometric compression tests ax101–
ax103: effect of ωB on the evolution of σr /σa.

The effect of ωB on the predicted radial stress σr are
shown in Fig. 14, in terms of stress ratio K = σr /σa . After
the initial elastic part of the stress path, during which K
decreases very fast, a subsequent small increase is observed
in all the simulations, until a final steady–state value is
approached for large axial shortenings. Taking these final
values of K as the coefficients of earth pressure at rest K0,
we note that as ωB decreases, K0 decreases as well, passing
from about 0.38 for ωB = 78◦ to 0.34 for ωB = 20◦. The results
in Figs. 13 and 14 indicate that the comparison between
observed and predicted post–yield compression curves
could be used as the main calibration criterion for ωB , with
a secondary criterion being the predicted value of K0.

The accuracy of the proposed integration algorithm has
been evaluated by resorting to the concept of of isoerror
map, see [Simo and Hughes, 1998, Ch. 3]. To this end 36
plane strain element simulations (iso01 to iso36) have been
performed on a cubic element of size H , applying in a single
step rectilinear compression paths characterized by ux /H
and uy /H values ranging from −5.0 × 10−4 to −1.6 × 10−2,
see Tab. 2. In all the tests, the initial state in the reference
configuration has been set to σx0 = σz0 = 697.6 kPa (radial
Cauchy stress), σy0 = 1815.3 kPa (axial Cauchy stress), B0 =
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0.4247, D0 = 0.9317 and e0 = 0.8275. This state corresponds
to the plastic state reached during the oedometric test ax101
at an axial shortening of 0.15, in almost K0 conditions.

The converged stress state (σx ,σy ,σz ,B ,D) at the end
of each test has been compared to the “exact” solution
(σ?x ,σ?y ,σ?z ,B?,D?) to define the following error measures:

ERRσ =
∥∥σ̂− σ̂?∥∥∥∥σ̂?∥∥ ERRq =

∥∥q −q?
∥∥∥∥q?

∥∥
where:

σ̂=


σx

σy

σz

 σ̂? =


σ?x

σ?y

σ?z

 q =
B

D

 q? =
B?

D?


Note that the need to distinguish between the errors in the
stress and internal variables update originates from the dif-
ferent units of σ̂ and q . In lack of a true exact solution for the
state update of the imposed deformation paths, the refer-
ence “exact” solutions have been computed repeating each
simulations with 100 steps.

Figs. 15 shows the contour maps of ERRσ and ERRq in
the − ln(1/λx ) vs. − ln(1/λy ) plane, where λx = 1+ux /H and
λy = 1+uy /H are the principal stretches in x and y direc-
tions, respectively. The data in the two figures show the good
accuracy properties of the algorithm. The error in the up-
dated stress state (Fig. 15a) reaches a maximum of 5% for
the strain path with the maximum extension (iso36 test), at
about 2% nominal strain norm. Is worth noting that, at the
same strain path extension, the accuracy increases when the
strain path is characterized by one of the two stretches pre-
vailing on the other. The error in the updated internal vari-
ables (Fig. 15b) is much smaller, with a maximum value of
0.08%.

The efficiency of the stress point algorithm for plastic
processes can be assessed by the convergence rate of the lo-
cal Newton algorithm detailed in Appendix C. Fig. 16 shows
the convergence profiles for the yield function y∗ and the

residuals Rε := ‖r ε‖ and Rq :=
√

(r B )2 + (r D )2, see eq. (139)
of Appendix C, as computed in the one–step simulations
iso06, iso31 and iso36. These three tests have been chosen
as they are characterized by: maximum λx and minimum
λy ; minimum λx and maximum λy , and minimum λx and
λy , respectively. The tolerance limits adopted for y∗, Rε and
Rq are indicated in each plot with a dashed line.

For all the three residuals, the profiles show a very fast
– almost quadratic – convergence, with the assumed toler-
ances reached in maximum 5 iterations. Of the three conver-
gence criteria which control the iteration procedure, those
on y∗ and Rε require more iterations to be met, while the
residual Rq drops very fast to very low values after just three
iterations. The convergence for test iso31 is much faster than
for the other tests, as in this case the trial stress state is much
closer to the yield surface at the beginning of the step, see
the value of y∗ at iteration 0 (initialization).

(a)

(b)

Figure 15. Isoerror maps: a) ERRσ ; b) ERRq .

7.2. Plane strain compression tests
As an example of application to a boundary value prob-

lem, a second group of simulations has been carried out to
model the “structural” response of a specimen of calcarenite
subjected to plane strain compression tests. In this case, the
objective is to assess the possibility that the solution may bi-
furcate from the ideal homogeneous deformation path, i.e. ,
by strain localization into shear band. This possibility has
been explored, in the context of linearized kinematics, by
Das et al. [2014]. By adopting a finite deformation formula-
tion, our goal is to assess the effects of non–linear kinematics
on the bifurcation mode of the solution, if any.

The layout of the plane strain tests has been taken from
the experimental device adopted by Finno et al. [1997] and
used in many others experimental works focused on the
study of shear localization in geomaterials. The geometry
of the specimen, of height H = 140 mm and width B = 40
mm in the plane of deformation, is shown in Fig. 17. The
specimen is confined between two horizontal, rigid and
perfectly smooth platens (ab and dc) and subjected to a
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(a)

(b)

(c)

Figure 16. Convergence profiles for simulations
iso06, iso31 and iso36: a) yield function y∗; b) residual
Rε; c) residual Rq .

uniform, constant pressure σx0 on the lateral boundaries
ad and bc. To prevent rigid translations in x direction, the
horizontal displacement has been fixed at the individual
node a, at the origin of the reference frame.

The initial state of the material has been assigned as
follows. The initial Cauchy stress state has been assumed
isotropic, with p0 = σx0 equal to two different values,
namely 200 kPa (low confining stress) and 1200 kPa (high

Figure 17. Biaxial tests: problem geometry and fi-
nite element discretizations adopted. a) Coarse mesh,
10×35 Q4 elements; b) fine mesh, 20×70 Q4 elements.

confining stress). In order to trigger the onset of (possible)
bifurcated solutions, the initial breakage and damage in-
dices have been assigned a spatially uncorrelated Gaussian
distribution within the domain, with an average value µ

= 0.01 and a coefficient of variation CoV = 20% for both
variables. The value of the CoV adopted guarantees that no
unphysical, negative values for B and D are generated.

The plane strain compression tests are simulated by
imposing negative vertical displacements to the top rigid
platen, up to a minimum values of -15 mm for low confining
stress tests and -30 mm for high confining stress tests.

In order to detect a possible mesh–dependence on
the test results, two different discretizations have been
adopted: a relatively coarse one, with 350 bilinear Q4 el-
ements (Fig. 17a) and a finer one, with 1400 bilinear Q4
elements (Fig. 17b). The complete program of plane strain
simulations is provided in Tab. 3.

The response of the specimens to an imposed rectilin-
ear displacement uy along the axial direction y is shown in
Fig. 18 for low confining stress tests and in Fig. 22 for high
confining stress. In the figures, the global response of the
specimen, as provided by external displacement and load
transducers in real experiments, is provided in terms of axial
load increment ∆Fy := Fy −Fy0 (Fy0 being the axial load at
the end of the isotropic compression stage) vs. the normal-
ized axial shortening −uy /H .

For the low confining stress case, the results in Fig. 18
show that the predictions obtained in small and finite de-
formations are practically coincident up to the peak failure
at first yield, occurring at an axial shortening of about 1.2%.
After the peak, the SD and FD predictions diverge signifi-
cantly, with the axial load remaining almost constant in the
SD simulation while it experiences a substantial reduction
in the FD case. It is worth noting that these observations are
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Table 3. Program of plane strain simulations. Note:
SD = small deformations; FD = finite deformations.

run no. material type mesh σx0 uy /H

bx001 Set 3 SD coarse 200.0 -0.107

bx101 Set 3 FD coarse 200.0 -0.075(*)

bx002 Set 3 SD coarse 1200.0 -0.214

bx102 Set 3 FD coarse 1200.0 -0.214

bx003 Set 3 SD fine 200.0 -0.061(*)

bx103 Set 3 FD fine 200.0 -0.044(*)

bx004 Set 3 SD fine 1200.0 -0.214

bx104 Set 3 FD fine 1200.0 -0.214

(*) Simulations terminated earlier due to lack of convergence in the global

equilibrium iteration.

Figure 18. Biaxial tests at low confining stress: ax-
ial load increment∆Fy vs. normalized axial shortening
−uy /H .

independent of the mesh size, as the solutions obtained with
the coarse and fine meshes are almost coincident for the en-
tire range of −uy /H . The simulations r003, r101, and r103 do
not reach the prescribed maximum shortening due to a lack
of convergence of the global equilibrium iteration.

The reason for the large impact of non–linear kinematics
on the post–peak response of the specimens can be found
by observing the evolution with time of material displace-
ments, internal variables and void ratio. Such information is
provided by Figs. 19–21, where the displacements are rep-
resented through the deformed configurations of the speci-
men at real scale (magnification factor set to 1), while B , D
and e are shown as contour maps. In the figure, four differ-
ent time stations have been considered, each correspond-
ing to a characteristic level of axial shortening – (a) to (d) –
identified on the load–displacement curves (shown in a in-
set) with full circles. The top four contour maps refer to the

Figure 19. Biaxial tests bx003 and bx103: Contour
maps of breakage index B at different time stations.

SD simulation, while the bottom ones to the corresponding
FD simulation.

As far as the SD predictions are concerned, it can be
clearly seen that, at peak – time station (a) – the specimen is
deforming homogeneously, except for some small variations
in D (see Fig. 20, top). Soon after reaching the peak – time
station (b) – the formation of a compactant shear band is
observed in the upper part of the specimen, with a localized
increase in grain crushing and bond damage. As the axial
displacement of the top platen progresses – time station
(c) – the deformation within the specimen tend to spread
through its upper part, rather than concentrating on the
initial localized zone. This spread can be seen as the coales-
cence of a number of secondary parallel bands, as in Fig. 19
for the variable B , or the progressive spread of the initial
band towards the top of the specimen, as in Figs. 20 (for D)
and 21 (for e). Finally, at time station (d), the distribution of
all the three fields B , D and e is again almost homogeneous,
although the deformed shape of the specimen is affected by
the irreversible shear strains accumulated in the previous
stages.

The spreading of the localized zone to the initially less de-
formed parts of the specimen is most likely caused by the
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Figure 20. Biaxial tests bx003 and bx103: Contour
maps of damage index D at different time stations.

relatively ductile behavior of the material, even at a confin-
ing stress as low as 200 kPa. The fact that no strong gradi-
ents of displacements or state variables have been devel-
oped during the entire test explains the mesh insensitivity
of the solution.

If we now consider the corresponding FD predictions, re-
ported at the bottom rows of the same figures, we note that
as far as time stations (a) and (b) are concerned, the pat-
tern of behavior of the specimen is pretty similar the one ob-
served in the SD simulations. The deformation is homoge-
neous up to time station (a) and start to localize into a shear
band in (b). In this case, the band is originating in the lower
part of the specimen, with a different (conjugate) orienta-
tion, and the same average inclination. However, as the test
progresses – time stations (c) and (d) – the mode of defor-
mation of the specimen changes radically from the SD case.
The initial offset to the left of the top platen with respect to
the base at stage (b) triggers a buckling deformation in the
slender specimen, clearly visible in its deformed shape. At
this point, this mode of deformation prevails over the initial
shear band mode. The shear band remains locked in its orig-
inal position, and is progressively shadowed by the buckling
deformation mode.

The emergence of the buckling mode in the post–peak
regime is responsible for the strong decrease observed in the
axial load as specimen shortening progresses. This mode
cannot emerge in the SD setting since, in this case, the
deformed configuration at each step is assumed coincident
to the (symmetric) reference one.

For the high confining stress case, the load–displacement
curves are shown Fig. 22. The predictions obtained in small
and finite deformations are again coincident up to the first
yield point, which is now attained at much smaller axial
shortening and axial load increment. Subsequently, while
the SD prediction shows a monotonic increase of axial load
with specimen shortening, the FD prediction is character-
ized by a small peak, followed by an almost constant Fy

value and then by a subsequent strong decrease of the axial
load up to the (large) final imposed shortening value. As in
the small confining stress case, the load–deformation curves
are independent of the mesh size, as the solutions obtained
with the coarse and fine meshes are almost coincident for
the entire range of −uy /H .

Again, the reason for the large impact of non–linear kine-
matics on the load–displacement response of the specimens
can be found by observing the evolution with time of ma-
terial displacements, internal variables and void ratio. Such

Figure 21. Biaxial tests bx003 and bx103: Contour
maps of void ratio e at different time stations.
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Figure 22. Biaxial tests at high confining stress: ax-
ial load increment∆Fy vs. normalized axial shortening
−uy /H .

Figure 23. Biaxial tests bx004 and bx104: Contour
maps of breakage index B at different time stations.

information is provided by Figs. 23–25, where, as before, the
displacements are represented through the deformed con-
figurations of the specimen at real scale (magnification fac-
tor set to 1), while B , D and e are shown as contour maps.

Looking at the results of the SD predictions, the specimen
deforms homogeneously throughout the entire test, up to

Figure 24. Biaxial tests bx004 and bx104: Contour
maps of damage index D at different time stations.

the maximum applied axial shortening, in spite of the initial
small random heterogeneity introduced in the initial con-
ditions for B and D . In fact, at the high initial stress level
considered in this test, the conditions for the bifurcation of
equilibrium into a shear band localized mode are unlikely to
occur and the initial heterogeneity is quickly erased by the
ductile response of the material. Given the “ideal” displace-
ment boundary conditions imposed at the top and bottom
platens, the same results of this test – plotted in terms of ho-
mogeneous stress and strain quantities – would have been
obtained in a single element test.

This is not the case for the FD simulation, in which the
specimen deforms homogeneously only up to the first yield
point at time station (a). Then, as soon as plastic deforma-
tions start to develop – time station (b) – the specimen show
a tendency to buckle leftwards, clearly visible in the map of
the bond damage index D of Fig. 24. As the axial shortening
increases – time stations (c) and (d) – the specimen buck-
les leftwards, showing no sign of strain localization, while
the axial load decreases as a consequence of the significant
horizontal displacements experienced by the upper loading
plate.

The occurrence of buckling in the FD regime is the
consequence of a bifurcation of equilibrium around time
station (b), upon which the system abandons the homoge-
neous rectilinear compression solution for the more stable
buckled one. The non–linear kinematics is essential for this
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Figure 25. Biaxial tests bx004 and bx104: Contour
maps of void ratio e at different time stations.

phenomenon to be captured correctly, as evidenced by the
comparison between the SD and FD solutions.

It is interesting to note that the choice of the solution
among the possible alternatives occurring at bifurcation
might be determined by the small random “perturbations”
introduced in the initial internal variables fields. In fact,
by comparing the results of Fig. 25 with those of Fig. 26,
which refers to the coarse mesh prediction of the same test
– performed with a different random initialization of B and
D – the most striking observation is that, in this latter case,
the buckling of the specimen occurs rightward, i.e. , in the
direction opposite to the one observed with the fine mesh.
Quite surprisingly, this drastic difference in the deformation
patterns of the specimens has almost no effect on the global
load–displacement curve and on the spatial distributions of
the void ratio.

8. Concluding remarks
In this work, the theory of isotropic hyperplasticity with
micromechanically–inspired internal variables, originated
from Einavs’s breakage mechanics and subsequent modifi-
cations, has been extended to the finite deformation setting
in order to deal with the behavior typically observed in
natural granular materials such as cemented soils and soft
arenaceous rocks, when subject to mechanical degradation
processes. The open, highly porous microstructure of such

materials can be responsible for the occurrence of high
volumetric and shear strains, as soon as, after first yield, the
breakage of intergranular bonds and the comminutions of
the grains give rise to a significant irreversible reduction of
the solid skeleton porosity.

As in recent applications of finite deformation plasticity
to geomechanics, the formulation of the theory is based
on a multiplicative split of the deformation gradient into
an elastic and a plastic deformation gradient. However,
differently from all the works originated from the finite de-
formation plasticity theory proposed by Simo [1992] – based
on the principle of maximum dissipation – the present
approach does not prevent the possibility of modeling non–
associative plastic flow in Kirchhoff or Cauchy stress spaces.
As an example of application of the general theory to a
specific class of natural geomaterials, a isotropic harden-
ing model for porous calcarenite rocks has been proposed
which can be considered the finite deformation counterpart
of the small–strain model of Tengattini et al. [2014] and Das
et al. [2014], with some minor, but important, modifications
on the free energy and dissipation functions adopted.

In view of the practical application of the model to actual
geotechnical engineering problems, an important contri-
bution of the work is represented by the development of a
numerical integration algorithm for its implementation into
general purpose finite element platforms. The proposed
algorithm is a fully implicit Backward Euler scheme based
on the concepts of operator split and exponential mapping,

Figure 26. Biaxial tests bx002 and bx102: Contour
maps of void ratio e at different time stations, coarse
mesh.
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which, when formulated in logarithmic principal elastic
strain space possesses the same algebraic structure of the
classical elastic predictor–plastic corrector schemes of in-
finitesimal plasticity. In addition, the algorithm has been
linearized in closed form, to allow the computation of the
consistent tangent stiffness matrix to be used in the global
Newton iteration scheme in order to achieve quadratic
convergence.

A series of single element tests have demonstrated the ac-
curacy and efficiency of the proposed integration scheme,
and have highlighted the role played by some of the ma-
terial constants in determining the material response un-
der simple, yet very important loading paths. The finite el-
ement simulation of two different plane strain biaxial tests,
modeled as boundary–value problems, has allowed to iden-
tify the importance of the kinematic setting in determining
the evolution of the specimen deformation upon reaching
a bifurcation condition. At small confining stress, the small
deformation simulation is characterized by localization of
strains into shear bands, while the finite deformation sim-
ulation switches very early to a buckling mode. At large con-
fining stress, the small deformation simulation remains per-
fectly homogeneous, while buckling again occurs as soon as
plastic deformations occur in the finite deformation case. It
is important to stress that non–linear kinematics is essential
to capture the buckling modes, since the deformed config-
uration and the (symmetric) reference one are assumed co-
incident in the small deformation approximation. This as-
pect could be of importance not only in the interpretation
of laboratory test results – as in this case – but also in prac-
tical applications where strong geometric non–linearity ef-
fects could be foreseen, e.g. , in the study of the stability of
tall structures with a relatively high center of gravity, in pres-
ence of significant second–order (P −∆) effects.

Finally, it should be noted that significant volumet-
ric strains of non–mechanical origin could be induced in
dissolution–prone granular materials – such as calcaren-
ite rocks – in presence of weathering processes involving
grain and bond dissolution. The extension of this work to
incorporate such degradation processes, of relevance in a
number of geotechnical applications including CO2 seques-
tration in depleted carbonatic reservoirs, is currently under
study and will be the subject of a forthcoming work.
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Appendix A. Spectral representation
of Kirchhoff stress

Due to assumptions (55a),(55b) and the definition of princi-
pal elastic logarithmic strain (54), the derivative of the free
energy function with respect to be takes the following form:

∂ψ

∂be =
3∑

A=1

∂ψ

∂εe
A

∂εe
A

∂be
A

∂be
A

∂be =
3∑

A=1

1

2be
A

∂ψ

∂εe
A

n(A) ⊗n(A) (123)

since:

εe
A = 1

2
ln(be

A) and
∂be

A

∂be = n(A) ⊗n(A)

in which n(A) is the A–th unit eigenvector of be , see, e.g. ,
[Simo, 1998, Ch. 33].

As be and ∂ψ/∂be are coaxial, the quantity on the RHS of
eq. (41) admits the following spectral representation:

2
∂ψ

∂be be =
3∑

A=1

∂ψ

∂εe
A

n(A) ⊗n(A) (124)

comparing this result with the spectral decomposition of
Kirchhoff stress:

τ=
3∑

A=1
τA n(A)

τ ⊗n(A)
τ
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where n(A)
τ (A = 1,2,3) are the unit eigenvectors of τ, from

the hyperelastic constitutive equation (41) we deduce that:

n(A)
τ = n(A) τA = ∂ψ

∂εe
A

(A = 1,2,3) (125)

Appendix B. Yield surface and
dilatancy in Kirchhoff
stress invariants space

Taking into account the elastic constitutive equation (62),
the generalized stresses χB and χD can be expressed as
functions of (p, q ,B ,D) as follows:

χB = ξB p2 +ηB q2 χD = ξD p2 +ηD q2 (126)

where:

ξB (B ,D) := ngθg

2

K g

(K
g b

)2
ξD (B ,D) := nb

2

K b

(K
g b

)2
(127a)

ηB (B ,D) := ngθg

6

Gg

(G
g b

)2
ηD (B ,D) := nb

6

Gb

(G
g b

)2
(127b)

Setting:

fB s (B) := (1−B)2 sin2ωB

EBC
(128a)

fBc (B) := (1−B)2 cos2ωB

EBC
(128b)

fD (D) := (1−D)2

EDC
(128c)

and taking into account eqs. (127), eq. (84) provides the yield
surface in Kirchhoff stress invariants space:

y∗ = q2Ξ1(p,B ,D)−M 2(p∗)2Ξ2(p,B ,D) = 0 (129)

in which p∗ := p +pt (1−D), and:

Ξ1 := 1+M 2(p∗)2
{

fB sηB

(
p

p +pt

)2

+ fBcηB + fDηD

}
(130a)

Ξ2 := 1−p2
{

fB sξB

(
p

p +pt

)2

+ fBcξB + fDξD

}
(130b)

From eq. (129) it is possible to express the deviatoric stress
at yield as a function of the mean effective stress p and the
internal variables B and D :

q = M p∗
√
Ξ2

Ξ1
(131)

Note that this relation holds only as long as the scalar func-
tionΞ2 is non–negative, a situation which, depending on the
choice made for the material constants, may occur at very
low values of B and D in the tensile mean stress range, as p
approaches the limiting value −pt (1−D).

In the low mean stress range, the yield surface is approx-
imately linear, with an intercept on the q axis (apparent co-
hesion intercept capp) given by:

capp := q(B ,D)
∣∣

p=0 = M pt (1−D)

√
1

1+µ2 (132)

where:

µ2 = M 2p2
t (1−D)2 (

fBcηB + fDηD
)

When D = 0 (fully bonded material), µ2 = 0 and c = M pt .
For relatively low values of D , the quantity µ2 is generally
negligible with respect to 1 and c ' M pt (1−D). Thus, the
apparent cohesion decreases almost linearly with increasing
D .

The slope of the yield surface at p = 0 is given by:

Mapp := ∂q

∂p

∣∣
p=0 = M

(
1

1+µ2

)3/2

(133)

which is equal to M when D = 0 and not too different from
M as long as µ2 remains negligible respect to 1. The yield
surface in the region of small p values can be replaced by
the apparent Drucker–Prager cone of equation:

q = capp +Mappp (134)

which intersects the p axis at p = −pt ,app = −pt (1−D)(1+
µ2).

The expressions of the volumetric and deviatoric invari-
ants of the logarithmic plastic strain rate are obtained from
eqs. (81) and (83) as:

d p
v = γ̇Q∗

v with: Q∗
v = tr(Q∗

τ ) = 2p

(p +pt )2 fB s
(
ξB p2 +ηB q2)

(135a)

d p
s = γ̇Q∗

s with: Q∗
s =

√
2

3

∥∥dev(Q∗
τ )

∥∥= 2q

M 2(p∗)2

(135b)

In the above equations, the expressions (126) have been
used for χB and χD . The dilatancy can then be determined
as a function of the current stress, breakage and bond
damage as:

D :=−d p
v

d p
s

=−M 2
(

p

q

)(
p∗

p +pt

)2

fB s
(
ξB p2 +ηB q2) (136)

In the expression on the RHS, the functions of the state vari-
ables B and D are all positive. Therefore, the sign of D is
provided by the mean stress p appearing in the first frac-
tion. The material contracts (D < 0) when p > 0 and dilates
(D> 0) otherwise, with a critical state line (D= 0) coinciding
with the q axis.

Appendix C. Iterative solution of the
plastic corrector
problem

C.1. Newton’s method
The governing equations of the plastic corrector problem

can be recast in the following format:

Rn+1(xn+1) = 0 (137)
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where:

xn+1 =



ε̂e
n+1

Bn+1

Dn+1

∆γn+1


Rn+1 =



r εn+1

r B
n+1

r D
n+1

r y
n+1


(138)

xn+1 is a vector collecting all the unknowns of the problem
and Rn+1 is the residual vector, defined as:

r εn+1 =−ε̂e
n+1 + ε̂e,tr

n+1 −∆γn+1Q̂
∗

(ε̂e
n+1,Bn+1,Dn+1) (139a)

r B
n+1 =−Bn+1 +B tr

n+1 +∆γn+1Q∗
B (ε̂e

n+1,Bn+1,Dn+1) (139b)

r D
n+1 =−Dn+1 +D tr

n+1 +∆γn+1Q∗
D (ε̂e

n+1,Bn+1,Dn+1) (139c)

r y
n+1 =−ŷ∗(ε̂e

n+1,Bn+1,Dn+1) (139d)

Using Newton’s method, the solution is obtained with the
following iterative procedure:

(1) Initialization:

x (0)
n+1 = xe,tr

n+1 xe,tr
n+1 := {

ε̂e,tr
n+1,Bn ,Dn ,0

}T
(140)

(2) At the iteration (k), with k > 1, compute the varia-
tion of xn+1 by linearization of eq. (137):

δx (k)
n+1 =−

{
J (k)

n+1

}−1
R (k)

n+1 (141)

where J (k)
n+1 is the (6×6) Jacobian matrix defined as:

J (k)
n+1 =

(
∂R

∂x

)(k)

n+1
=

A U

V 0

(k)

n+1

(142)

and:

A(k)
n+1 :=


∂r ε/∂ε̂e ∂r ε/∂B ∂r ε/∂D

∂r B /∂ε̂e ∂r B /∂B ∂r B /∂D

∂r D /∂ε̂e ∂r D /∂B ∂r D /∂D


(k)

n+1

U (k)
n+1 :=


∂r ε/∂∆γ

∂r B /∂∆γ

∂r D /∂∆γ


(k)

n+1

(
V (k)

n+1

)T
:=


∂r y /∂ε̂e

∂r y /∂B

∂r y /∂D


(k)

n+1

(3) Update of the solution vector and of residual vector:

x (k+1)
n+1 = x (k)

n+1 +δx (k)
n+1 R (k+1)

n+1 = R(x (k+1)
n+1 ) (143)

(4) Check for convergence: if(∥∥∥r ε,(k+1)
n+1

∥∥∥< TOLε
)

&
(∣∣∣r B ,(k+1)

n+1

∣∣∣< TOLB

)
&

(∣∣∣r D ,(k+1)
n+1

∣∣∣< TOLD

)
&

(∣∣∣r y ,(k+1)
n+1

∣∣∣< TOLy

)
then:

xn+1 = x (k+1)
n+1 then exit.

else:

x (k)
n+1 ← x (k+1)

n+1 then go to step (2).

In step (2), the inverse of the Jacobian matrix is computed in
closed form, using the Fortran 90 library m66inv by Simp-
son [2009]. An alternative possibility is to exploit the zero
diagonal term in the (6,6) component and reduce the prob-
lem dimension by 1 via static condensation. The expressions
of the various components of matrix A(k)

n+1 and vectors U (k)
n+1

and V (k)
n+1 for the model described in Sect. 4 are provided in

Sects. C.2–C.4. To ease the notation, the superscript (k) and
the subscript (n + 1) are omitted; in addition, the following
scalar quantities are introduced to make more compact the
algebraic expressions of the components of A(k)

n+1, U (k)
n+1 and

V (k)
n+1:

p̃ := p +pt p∗ := p +pt (1−D)

C1 := 2

3

(1−B)2 sin2ωB

EBC
C2 := 6

M 2(p∗)2

C3 := 4

3

(1−B)sin2ωB

EBC
C4 := (1−B)2 cos2ωB

EBC

C5 := (1−D)2

EDC
C6 := 2(1−B)cos2ωB

EBC

C7 := 2(1−D)

EDC

C.2. Components of (5×5) matrix A

Matrix A can be considered composed of 9 sub–matrices
which represent the derivatives of the 3 residuals r ε, r B and
r D with respect to the unknowns ε̂e , B and D . Each of these
sub–matrices is provided in the following.

Matrix A11

From eqs. (139) and (83a), we have:

A11 := ∂r ε

∂ε̂e =−I 3 −∆γ∂Q̂
∗

∂ε̂e (144)

where, fromeq. (83a):

∂Q̂
∗

∂ε̂e = C1

p̃2

{
ngθ

g p(K gεe
v )+χB K

g b
(
1− 2p

p̃

)}
δ⊗δ

+
(
2C1ngθ

g Gg p

p̃2

)
δ⊗ êe

−
(

2C2
G

g b
K

g b

p∗

)
êe ⊗δ+C2G

g b
I dev

3 (145)

and

I dev
3 := I 3 − 1

3
δ⊗δ

Column vector A12

From eqs. (139) and (83a), we have:

A12 := ∂r ε

∂B
=−∆γ∂Q̂

∗

∂B
(146)
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where, fromeq. (83a):

∂Q̂
∗

∂B
=−χB

p̃2

{
C3p +C1ngθ

g (K gεe
v )

(
1− 2p

p̃

)}
δ

+C2ngθ
g
{

2K gεe
v

p∗ G
g b −Gg

}
êe (147)

Column vector A13

From eqs. (139) and (83a), we have:

A13 := ∂r ε

∂D
=−∆γ∂Q̂

∗

∂D
(148)

where, fromeq. (83a):

∂Q̂
∗

∂D
=−χB

p̃2

{
C1nb(K bεe

v )

(
1− 2p

p̃

)}
δ

+C2

{
2
(
nbK bεe

v +pt
)

p∗ G
g b −nbGb

}
êe (149)

Row vector A21

As the scalar function Q∗
B provided by eq. (83b) is inde-

pendent of ε̂e , we have:

A21 :=
(
∂r B

∂ε̂e

)T

= 0(1×3) (150)

Scalar A22

From eqs. (139) and (83b), we have:

A22 := ∂r B

∂B
=−1+∆γ∂Q∗

B

∂B
=−1−2∆γC6 (151)

Scalar A23

As the scalar function Q∗
B provided by eq. (83b) is inde-

pendent of D , we have:

A23 := ∂r B

∂D
= 0 (152)

Row vector A31

As the scalar function Q∗
D provided by eq. (83c) is inde-

pendent of ε̂e , we have:

A31 :=
(
∂r D

∂ε̂e

)T

= 0(1×3) (153)

Scalar A32

As the scalar function Q∗
D provided by eq. (83c) is inde-

pendent of B , we have:

A32 := ∂r D

∂B
= 0 (154)

Scalar A33

From eqs. (139) and (83c), we have:

A33 := ∂r D

∂D
=−1+∆γ∂Q∗

D

∂D
=−1−2∆γC7 (155)

C.3. Components of (5×1) column vector U

Column vector U can be considered composed of 3 sub–
vectors which represent the derivatives of the 3 residuals r ε,
r B and r D with respect to the unknown ∆γ. From eqs. (139)
and (83) we have:

U =


−Q̂

∗

Q∗
B

Q∗
D

=


−C1χB

(
p/p̃2

)
δ−C2G

g b
êe

2C4

2C5

 (156)

C.4. Components of (1×5) row vector V

Row vector V can be considered composed of 3 sub–
vectors which represent the derivatives of the residual r y

with respect to the unknowns ε̂e , B and D . Each of these
sub–vectors is provided in the following.

Row vector V 1

From eqs. (139) and (84), we have:

V 1 :=
(
∂r y

∂ε̂e

)T

=−
(
∂y∗

∂ε̂e

)T

(157)

where:

∂y∗

∂ε̂e =
{

3p

2p̃2 C1

[
ngθg p

(
K gεe

v

)+2χB K
g b

(
1− p

p̃

)]

+
(
C4ngθ

g K g +C5nbK b
)
εe

v −
3C2

p∗ K
g b

(
G

g b
εe

s

)2
}
δ

+
{

ngθ
g Gg

[
3C1

(
p

p̃

)2

+2C4

]
+2C5nbGb

+2C2

(
G

g b
)2

}
êe (158)

Scalar V2

From eqs. (139) and (84), we have:

V2 := ∂r y

∂B
=−∂y∗

∂B
(159)

where:

∂y∗

∂B
=−3χB

p

p̃2

{
1

2
C3p +C1ngθ

g (
K gεe

v

)(
1− p

p̃

)}

−C6χB −3C2ngθ
g G

g b
{

Gg −
(
K gεe

v

)
p∗ G

g b
}(
εe

s

)2 (160)

Scalar V3

From eqs. (139) and (84), we have:

V3 := ∂r y

∂D
=−∂y∗

∂D
(161)

where:

∂y∗

∂D
=−3χB

p

p̃2

{
C1nb

(
K bεe

v

)(
1− p

p̃

)}
−C7χD

−3C2G
g b

{
nbGb −

(
nbK bεe

v +pt
)

p∗ G
g b

}(
εe

s

)2 (162)
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