Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil
Open Geomechanics, Volume 4 (2023), article no. 4, 25 p.

Unintended and unwanted high frequency motion is sometimes observed in small-scale experimental works and in numerical simulations when soil is subjected to simple harmonic input motions. This high frequency motion has been often attributed to the drawbacks of actuating systems in experimental setups and to numerical noise in computational analyses. This work presents introductory consideration supporting the hypothetical idea that the recorded and the computed high frequency motion can possibly be the consequence of an unrecognized before physical phenomenon of soil elastic waves released in nonlinear hysteretic soil and affecting the dynamic response of soil to harmonic excitation. To this aim, simplified numerical studies representative of the most basic soil mechanical properties are carried out. The results reveal potential importance of soil-released elastic waves and their reflections inside a soil column when understanding the free field response in the numerical simulations representative of small-scale experimental setups. Chosen numerical cases are compared with available examples of experimental works from the literature. In addition, two further cases are analyzed, including a case showing the potential importance of soil-released elastic waves in the response of soil to real earthquakes, and a case showing the response of structural elements.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ogeo.16
Keywords: Soil dynamics, elastic waves, wave propagation, soil non-linearity, finite element modelling, soil constitutive modelling
Kowalczyk, Piotr 1; Gajo, Alessandro 2

1 University of Southampton, Faculty of Engineering and Physical Sciences, Boldrewood Campus Southampton, United Kingdom
2 University of Trento, Department of Civil, Environmental and Mechanical Engineering, Trento, Italy
License: CC-BY-NC-SA 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{OGEO_2023__4__A4_0,
     author = {Kowalczyk, Piotr and Gajo, Alessandro},
     title = {Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil},
     journal = {Open Geomechanics},
     eid = {4},
     pages = {1--25},
     publisher = {Alert Geomaterials},
     volume = {4},
     year = {2023},
     doi = {10.5802/ogeo.16},
     zbl = {1211.74094},
     language = {en},
     url = {https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.16/}
}
TY  - JOUR
AU  - Kowalczyk, Piotr
AU  - Gajo, Alessandro
TI  - Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil
JO  - Open Geomechanics
PY  - 2023
SP  - 1
EP  - 25
VL  - 4
PB  - Alert Geomaterials
UR  - https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.16/
DO  - 10.5802/ogeo.16
LA  - en
ID  - OGEO_2023__4__A4_0
ER  - 
%0 Journal Article
%A Kowalczyk, Piotr
%A Gajo, Alessandro
%T Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil
%J Open Geomechanics
%D 2023
%P 1-25
%V 4
%I Alert Geomaterials
%U https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.16/
%R 10.5802/ogeo.16
%G en
%F OGEO_2023__4__A4_0
Kowalczyk, Piotr; Gajo, Alessandro. Introductory consideration supporting the idea of the release of elastic waves in hysteretic soil. Open Geomechanics, Volume 4 (2023), article  no. 4, 25 p. doi : 10.5802/ogeo.16. https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.16/

[1] Abate, G.; Massimino, M. R. Dynamic soil-structure interaction analysis by experimental and numerical analysis, Riv. Ital. Geot., Volume 2 (2016), pp. 44-70

[2] Bonilla, L. F.; Archuleta, R. J.; Lavallée, D. Hysteretic and dilatant behaviour of cohesionless soils and their effects on nonlinear soil response: field data observations and modelling, Bull. Seism. Soc. Am., Volume 95 (2005) no. 6, pp. 2373-2395 | DOI

[3] Been, K.; Jefferies, M. J. A state parameter for sands, Géotechnique, Volume 35 (1985) no. 2, pp. 99-112 | DOI

[4] Bilotta, E.; Lanzano, G.; Madabhushi, S. P. G.; Silvestri, F. A numerical Round Robin on tunnels under seismic actions, Acta Geot., Volume 9 (2014), pp. 563-579 | DOI

[5] Brennan, A. J.; Thusyanthan, N. I.; Madabhushi, S. P. G. Evaluation of shear modulus and damping in dynamic centrifuge tests, J. Geot. Geoenv. Eng., Volume 131 (2005) no. 12, pp. 1488-1497 | DOI

[6] Conti, R.; Madabhushi, G. S. P.; Viggiani, G. M. B. On the behaviour of flexible retaining walls under seismic actions, Géotechnique, Volume 62 (2012) no. 12, pp. 1081-1094 | DOI

[7] Chau, K. T.; Shen, C. Y.; Guo, X. Nonlinear seismic soil-pile-structure interactions: Shaking table tests and FEM analyses, Soil Dyn. Earthq. Eng., Volume 29 (2009), pp. 300-310 | DOI

[8] Conti, R.; Viggiani, G. M. B. Evaluation of Soil Dynamic Properties in Centrifuge Tests, J. Geot. Geoenv. Eng., Volume 138 (2012) no. 7, pp. 850-859 | DOI

[9] Dassault Systèmes Abaqus Standard software package, 2019

[10] Dar, A. R. Development of a flexible shear-stack for shaking table testing of geotechnical problems, Ph. D. Thesis, University of Bristol (1993)

[11] Durante, M. G.; Di Sarno, L.; Mylonakis, G.; Taylor, C. A.; Simonelli, A. L. Soil-pile-structure interaction: experimental outcomes from shaking table tests, Earthq. Eng. Struct. Dyn., Volume 45 (2016) no. 7, pp. 1041-1061 | DOI

[12] Dafalias, Y. F.; Manzari, M. T. A simple plasticity sand model accounting for fabric change effects, J. Eng. Mech., Volume 130 (2004) no. 6, pp. 622-634 | DOI

[13] Dietz, M.; Muir Wood, D. Shaking table evaluation of dynamic soil properties, Proceedings of 4th International Conference of Earthquake Geotechnical Engineering, June 25-28, Thessaloniki, Greece, 2007, pp. 25-28

[14] Durante, M. G. Experimental and numerical assessment of dynamic soil-pile-structure interaction, Ph. D. Thesis, Università degli Studi di Napoli Federico II, Italy (2015)

[15] Fan, F. G.; Ahmadi, G.; Tadjbakhsh, I. G. Base isolation of a multi-story building under a harmonic ground motion - a comparison of performances of various systems, 1988 (Technical Report NCEER-88-0010)

[16] Fellin, W. Numerical computation of nonlinear inelastic waves in soils, Pure Appl. Geophys., Volume 159 (2002), pp. 1737-1748 | DOI

[17] Garini, E.; Anastasopoulos, I.; Gazetas, G.; O’Riordan, N.; Kumar, P.; Ellison, K.; Ciruela-Ochoa, F. Discussion on: Soil, basin and soil-building-soil interaction effects on motions of Mexico City during seven earthquakes, Géotechnique, Volume 72 (2022) no. 6, pp. 556-564 | DOI

[18] Gajo, A. Hyperelastic modelling of small-strain anisotropy of cyclically loaded sand, Int. J. Numer. Anal. Methods Geomech., Volume 34 (2010) no. 2, pp. 111-134 | DOI | Zbl

[19] Gajo, A.; Muir Wood, D. Numerical analyses of behaviour of shear stacks under dynamic loading, 1997 Report on work performed under the EC project European Consortium of Earthquake Shaking Tables (ECOEST): Seismic bearing capacity of shallow foundations.

[20] Gajo, A.; Muir Wood, D. A kinematic hardening constitutive model for sands: the multiaxial formulation, Int. J. Numer. Anal. Methods Geomech., Volume 23 (1999) no. 9, pp. 925-965 | DOI | Zbl

[21] Gajo, A.; Muir Wood, D. Severn-Trent sand: a kinematic hardening constitutive model for sands: the q-p formulation, Géotechnique, Volume 49 (1999) no. 5, pp. 595-614 | DOI

[22] Gallegos, M. F.; Saragoni, G. R. Analysis of strong-motion accelerograph records of the 16 April 2016, Mw 7.8 Muisne, Ecuador Earthquake, Proceedings of 16th World Conference on Earthquake Engineering, Santiago, Chile, 2017

[23] Hardin, B. O.; Drnevich, V. P. Shear modulus and damping in soils, J. Soil Mech. Found. Div., Volume 98 (1972) no. 7, pp. 667-692 | DOI

[24] Kutter, B. L.; Carey, T. J.; Hashimoto, T.; Zeghal, M.; Abdoun, T.; Kokkali, P.; Madabhushi, G. S. P.; Haigh, S. K.; Burali d’Arezzo, F.; Madabhushi, S. S. C.; Hung, W.-Y.; Lee, C.-J.; Cheng, H.-C.; Iai, S.; Tobita, T.; Ashino, T.; Ren, J.; Zhou, Y.-G.; Chen, Y.-M.; Sun, Z.-B.; Manzari, M. T. LEAP-GWU-2015 experiment specifications, results and comparisons, Soil Dyn. Earthq. Eng., Volume 113 (2018), pp. 616-628 | DOI

[25] Kutter, B. L.; Carey, T. J.; Stone, N.; Li Zheng, B.; Gavras, A.; Manzari, M. T.; Zeghal, M.; Abdoun, T.; Korre, E.; Escoffier, S.; Haigh, S. K.; Madabhushi, G. S. P.; Madabhushi, S. S. C.; Hung, W.-Y.; Liao, T.-W.; Kim, D.-S.; Kim, S.-N.; Ha, J.-G.; Kim, N. R.; Okamura, M.; Sjafruddin, A. N.; Tobita, T.; Ueda, K.; Vargas, R.; Zhou, Y.-G.; Liu, K. LEAP-UCD-2017 Comparison of Centrifuge Test Results, Springer, 2019

[26] Kelly, J. M. The influence of base isolation on the seismic response of light secondary equipment, 1982 (Research Report UCB/EERC-81/17. University of California, Berkeley)

[27] Kokusho, T. Cyclic triaxial test of dynamic soil properties for wide strain range, Soils Found., Volume 20 (1980) no. 2, pp. 45-60 | DOI

[28] Kowalczyk, P. Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading, Ph. D. Thesis, University of Trento, Italy (2020)

[29] Kramer, S. L. Geotechnical Earthquake Engineering, Prentice Hall, 1996

[30] Kutter, B. L.; Wilson, D. W. De-liquefaction shock waves, Proceedings of 7th U.S.-Japan Workshop on Earthquake Resistant Design for Lifeline Facilities and Countermeasures Against Soil Liquefaction, 1999, pp. 295-310 (Technical Report MCEER-99-0019)

[31] Lanzano, G.; Bilotta, E.; Russo, G.; Silvestri, F.; Madabhushi, S. P. G. Centrifuge modelling of seismic loading on tunnels in sand, Geot. Testing J., Volume 35 (2012) no. 6, pp. 854-869 | DOI

[32] Madabhushi, G. S. P. Centrifuge modelling for civil engineers, Taylor & Francis, 2014

[33] Madabhushi, S. S. C.; Dobrisan, A.; Beber, R.; Haigh, S. K.; Madabhushi, G. S. P. LEAP-UCD-2017 Centrifuge tests at Cambridge, Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading (Kutter, B.; Manzari, M.; Zeghal, M., eds.), Springer, 2020

[34] Manzari, M. T.; El Ghoraiby, M.; Zeghal, M.; Kutter, B. L.; Arduino, P.; Barrero, A. R.; Bilotta, E.; Chen, L.; Chen, R.; Chiaradonna, A.; Elgamal, A.; Fasano, G.; Fukutake, K.; Fuentes, W.; Ghofrani, A.; Haigh, S. K.; Hung, W.-Y.; Ichii, K.; Kim, D. S.; Kiriyama, T.; Lascarro, C.; Madabhushi, G. S. P.; Mercado, V.; Montgomery, J.; Okamura, M.; Ozutsumi, O.; Qiu, Z.; Taiebat, M.; Tobita, T.; Travasarou, T.; Tsiaousi, D.; Ueda, K.; Ugalde, J.; Wada, T.; Wang, R.; Yang, M.; Zhang, J.-M.; Zhou, Y.-G.; Ziotopoulou, K. LEAP-2017: Comparison of the Type-B Numerical Simulations with Centrifuge Test Results, Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017 (Kutter, B. et al., eds.), Springer, 2019

[35] Mercado, V.; El-Sekelly, W.; Abdoun, T.; Pajaro, C. A study on the effect of material nonlinearity on the generation of frequency harmonics in the response of excited soil deposits, Soil Dyn. Earthq. Eng., Volume 115 (2018), pp. 787-798 | DOI

[36] Manandhar, S.; Kim, S.-N.; Ha, J.-G; Ko, K.-W; Lee, M.-G.; Kim, D.-S. Liquefaction evaluation using frequency characteristics of acceleration records in KAIST centrifuge tests for LEAP, Soil Dyn. Earthq. Eng., Volume 140 (2021), 106332 | DOI

[37] McAllister, G.; Taiebat, M.; Ghofrani, A.; Chen, L.; Arduino, P. Nonlinear site response analyses and high frequency dilation pulses, Proceedings of 68th Canadian Geotechnical Conference (Quebec, Canada), 2015

[38] Nekorkin, V. Introduction to nonlinear oscillations, John Wiley & Sons, 2015 | DOI

[39] Niemunis, A.; Herle, I. Hypoplastic model for cohesionless soils with elastic strain range, Mech. Cohesive-Frictional Mater., Volume 2 (1997), pp. 279-299 | DOI

[40] Nowacki, W. K. Stress waves in non-elastic solids, Pergamon Press, 1978

[41] Pavlenko, O. Nonlinear seismic effects in soils: numerical simulation and study, Bull. Seism. Soc. Am., Volume 91 (2001) no. 2, pp. 381-396 | DOI

[42] Pavlenko, O.; Irikura, K. Identification of the non-linear behaviour of liquefied and non-liquefied soils during the 1995 Kobe earthquake, Geophys. J. Int., Volume 160 (2005) no. 2, pp. 539-553 | DOI

[43] Roten, D.; Fah, D.; Bonilla, L. F. High-frequency ground motion amplification during the 2011 Tohoku earthquake explained by soil dilatancy, Geophys. J. Int., Volume 193 (2013) no. 2, pp. 898-904 | DOI

[44] Ruiz, S.; Saragoni, G. R. Free vibrations of soil during large earthquakes, Soil Dyn. Earthq. Eng., Volume 29 (2009) no. 1, pp. 1-16 | DOI

[45] Semblat, J. F.; Brioist, J. J. Efficiency of higher order finite elements for the analysis of seismic wave propagation, J. Sound Vib., Volume 231 (2000) no. 2, pp. 460-467 | DOI

[46] Song, E. X.; Haider, A.; Peng, L. Numerical simulation of plane wave propagation in a semi-infinite media with a linear hardening plastic constitutive model, Proceedings of China-Europe Conference on Geotechnical Engineering (Springer Series in Geomechanics and Geoengineering), Volume 1, Springer, 2018, pp. 410-414 | DOI

[47] Seed, H. B.; Idriss, I. M. Soil moduli and damping factors for dynamic response analysis. EERC report 70-10, 1970 (University of California, Berkeley)

[48] Singh, S. K.; Quaas, R.; Ordaz, M.; Mooser, F.; Almora, D.; Torres, M.; Vasquez, R. Is there truly a “hard” rock site in the Valley of Mexico?, Geophys. Res. Lett., Volume 22 (1995) no. 4, pp. 481-484 | DOI

[49] Shahnazari, H.; Towhata, I. Torsion shear tests on cyclic stress-dilatancy relationship of sand, Soils Found., Volume 42 (2002) no. 1, pp. 105-119 | DOI

[50] Tsiapas, Y. Z.; Bouckovalas, G. D. Selective Filtering of Numerical Noise in Liquefiable Site Response Analyses, Proceedings of Geotechnical Earthquake Engineering and Soil Dynamics Conference, June 10-13, Austin, Texas, 2018, pp. 10-13 | DOI

[51] Von Wolffersdorff, P. A. A hypoplastic relation for granular materials with a predefined limit state surface, Mech. Cohesive-Frictional Mater., Volume 1 (1996) no. 3, pp. 251-271 | DOI

[52] Veeraraghavan, S.; Spears, R. E.; Coleman, J. L. High frequency content in soil nonlinear response: A numerical artefact or a reality?, Soil Dyn. Earthq. Eng., Volume 116 (2019), pp. 185-191 | DOI

[53] Vitorino, M. V.; Vieira, A.; Rodrigues, M. S. Effect of sliding friction in harmonic oscillators, Sci. Rep., Volume 7 (2017) no. 1, p. 3726 | DOI

[54] Wang, L. Foundations of stress waves, Elsevier, 2007

[55] Wiebe, L.; Christopoulos, C. Characterizing acceleration spikes due to stiffness changes in nonlinear systems, Earthq. Eng. Struct. Dyn., Volume 39 (2010), pp. 1653-1670 | DOI

[56] Watanabe, K.; Pisano, F.; Jeremic, B. Discretization effects in the finite element simulation of seismic waves in elastic and elastic-plastic media, Eng. Comput., Volume 33 (2017), pp. 519-545 | DOI

[57] Wang, G.; Wei, X.; Zhao, J. Modelling spiky acceleration response of dilative sand deposits during earthquakes with emphasis on large post-liquefaction deformation, Earthq. Eng. Eng. Vib., Volume 17 (2018) no. 1, pp. 125-138 | DOI | Zbl

[58] Yao, J.; Han, Y.; Dietz, M.; Xiao, R.; Chen, S.; Wang, T.; Niu, Q. Acceleration harmonic estimation for a hydraulic shaking table by using particle swarm optimization, Trans. Inst. Meas. Control, Volume 39 (2017) no. 5, pp. 738-747 | DOI

Cited by Sources: