Removal of the membrane penetration error from triaxial data
Open Geomechanics, Volume 2 (2020), article no. 5, 13 p.

Most triaxial tests are fraught with substantial membrane penetration errors. A simple correction procedure for data obtained from various tests is proposed. Correction formulas for the membrane penetration error have been derived for different types of tests including not perfectly saturated soils. In particular, a correction of the undrained cyclic stress paths is presented in detail. It is demonstrated that the correction for the membrane penetration error is indispensable for a realistic estimation of the cyclic resistance ratio in coarse- and medium-grained liquefiable soils. A Mathematica code for the correction of laboratory data is given. An analogous Matlab code is available from the authors. Without the correction many results could lie far on the unsafe side. This is the case especially for the undrained cyclic loading.

Published online:
DOI: 10.5802/ogeo.7
Keywords: Membrane penetration, triaxial test, cyclic loading, CRR, Mathematica
Niemunis, Andrzej 1; Knittel, Lukas 2

1 Karlsruhe Institute of Technology (KIT), Institute of Soil Mechanics and Rock Mechanics (IBF) Engler-Bunte-Ring 14, 76131 Karlsruhe Germany
2 Karlsruhe Institute of Technology (KIT), Institute of Soil Mechanics and Rock Mechanics (IBF)
License: CC-BY-NC-SA 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Niemunis, Andrzej and Knittel, Lukas},
     title = {Removal of the membrane penetration error from triaxial data},
     journal = {Open Geomechanics},
     eid = {5},
     pages = {1--13},
     publisher = {Alert Geomaterials},
     volume = {2},
     year = {2020},
     doi = {10.5802/ogeo.7},
     language = {en},
     url = {}
AU  - Niemunis, Andrzej
AU  - Knittel, Lukas
TI  - Removal of the membrane penetration error from triaxial data
JO  - Open Geomechanics
PY  - 2020
SP  - 1
EP  - 13
VL  - 2
PB  - Alert Geomaterials
UR  -
DO  - 10.5802/ogeo.7
LA  - en
ID  - OGEO_2020__2__A5_0
ER  - 
%0 Journal Article
%A Niemunis, Andrzej
%A Knittel, Lukas
%T Removal of the membrane penetration error from triaxial data
%J Open Geomechanics
%D 2020
%P 1-13
%V 2
%I Alert Geomaterials
%R 10.5802/ogeo.7
%G en
%F OGEO_2020__2__A5_0
Niemunis, Andrzej; Knittel, Lukas. Removal of the membrane penetration error from triaxial data. Open Geomechanics, Volume 2 (2020), article  no. 5, 13 p. doi : 10.5802/ogeo.7.

[1] Ansal, A.M.; Erken, A. Post correction procedure for membrane compliance effects on pore pressure, Journal of Geotechnical Engineering, Volume 122 (1996) no. 1, pp. 27-38 | DOI

[2] Bauer, E. Zum mechanischen Verhalten granularer Stoffe unter vorwiegend ödometrischer Beanspruchung, Ph. D. Thesis, Institut für Boden- und Felsmechanik der Universität Karlsruhe (1992) (Heft Nr 130)

[3] Baldi, G.; Nova, R. Membrane penetration effects in triaxial testing, Journal of Geotechnical Engineering, Volume 110 (1984) no. 3, pp. 403-420 | DOI

[4] Frydman, S.; Zeitlen, J.G.; Alpan, I. The membrane effect in triaxial testing on granular soils, Journal of Testing and Evaluation, Volume 1 (1973), pp. 37-41

[5] Gudehus, G. Comparison of some constitutive laws for soils under radially symmetric loading and unloading, Numerical Methods in Geomechanics (1979), pp. 1309-1323 (3-rd International Conference in Aachen)

[6] Haeri, S.M.; Shakeri, M.R. Effects of membrane compliance on pore water pressure generation in gravelly sands under cyclic loading, Geotechnical Testing Journal, Volume 33 (2010) no. 5, pp. 1-10

[7] Kiekbusch, M.; Schuppener, B. Membrane penetration and its effects on pore pressure, Journal of the Geotechnical Engineering Division, ASCE, Volume 103 (1977) no. GT11, pp. 1267-1279 | DOI

[8] Knittel, L.; Wichtmann, T.; Niemunis, A.; Huber, G.; Espino, E.; Triantafyllidis, T. Pure elastic stiffness of sand represented by response envelopes derived from cyclic triaxial tests with local strain measurements, Acta Geotechnica (2020) | DOI

[9] Lee, K.L.; Fitton, J.A. Factors affecting the cyclic loading strength of soil, Vibration Effects of Earthqakes on Soils and Foundations, ASTM Special Technical Publication 450 (1969), pp. 71-95

[10] Newland, P.L.; Alley, B.H. Volume changes during drained triaxial tests on granular materials, Geotechnique, Volume 7 (1957), pp. 17-34 | DOI

[11] Nicholson, P. G.; Seed, R. B.; Anwar, H. A. Elimination of membrane compliance in undrained triaxial testing. 1. Measurement and evaluation, Canadian Geotechnical Journal, Volume 30 (1993), pp. 727-738 | DOI

[12] Osinov, V.; Chrispoulos, S.; Grandas-Tavera, C. Vibration-Induced Stress Changes in Saturated Soil: A High Cyclic Problem, Holistic simulation of geotechnical installation processes. Numerical and physical modelling. (2016), pp. 69-84 | DOI

[13] Rowe, P. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact, Proceedings of the Royal Society of London, Volume 269 (1962), pp. 500-527

[14] Ramana, K.V.; Raju, V.S. Membrane penetration in triaxial tests, Journal of Geotechnical Engineering, Volume 108 (1982) no. 2, pp. 305-310

[15] Raju, V.S.; Sadasivian, S.K. Membrane penetration in triaxial tests on sand, Journal of the Geotechnical Engineering Division, ASCE, Volume 100 (1974) no. GT4, pp. 482-489 | DOI

[16] Roscoe, K. H.; Schofield, A.N.; Thurairaja, A. An evaluation of test data for selecting a yield criterion for soil, Proceedings of Laboratory Shear Testing of Soils, Special Technical Publication, Volume 361 (1963), pp. 111-128

[17] Raju, V.S.; Venkatramana, K. Undrained triaxial tests to assess liquefaction potential of sands - effects of membrane penetration, Proc. of the International Symposium on Soils under Cyclic Transient Loading, Rotterdam, Volume 2 (1980), pp. 483-494

[18] Seed, R.B.; Anwar, H.A.; Nicholson, P.G. Evaluation and mitigation of membrane compliance effects in undrained testing of saturated soils (1989) no. Technical report, SU/GT/89-01 (Technical report)

[19] Skempton, A.W. The pore pressure coefficients A and B, Géotechnique, Volume 4 (1954) no. 4, pp. 143-147 | DOI

[20] Taylor, D.W. Fundamentals of Soil Mechanics, John Wiley and Sons, New York, 1948

[21] Tokimatsu, K.; Nakamura, K. A liquefaction test without membrane penetration effects, Soils and Foundations, Volume 26 (1986) no. 4, pp. 127-138 | DOI

[22] Tokimatsu, K. System compliance correction from pore pressure response in undrained triaxial tests, Soils and Foundations, Volume 30 (1990) no. 2, pp. 14-22 | DOI

[23] Towhata, I. Geotechnical Earthquake Engineering, Springer, 2008 | DOI

[24] Vaid, Y.P.; Fisher, J.M.; Kuerbis, R.H.; Negussey, D. Particle gradation and liquefaction, Journal of Geotechnical Engineering, Volume 116 (1990) no. 4, pp. 698-703 | DOI

[25] Vaid, Y.P.; Negussey, D. Relative Density of pluviated sand samples, Soils and Foundations, Volume 24 (1984) no. 2, pp. 101-105 | DOI

[26] Wichtmann, T. Explicit accumulation model for non-cohesive soils under cyclic loading, Ph. D. Thesis, Ruhr-University Bochum, Heft 38 (2005)

[27] Wolffersdorff, P.-A. von A hypoplastic relation for granular materials with a predefined limit state surface, Mechanics of Cohesive-Frictional Materials, Volume 1 (1996), pp. 251-271 | DOI

[28] Wichtmann, T.; Steller, K.; Triantafyllidis, Th.; Back, M.; Dahmen, D. An experimental parametric study on the liquefaction resistance of sands in spreader dumps of lignite opencast mines, Soil Dynamics and Earthquake Engineering, Volume 122 (2019), pp. 290-309 | DOI

Cited by Sources: