In situ X-ray CT imaging of transient water retention experiments with cyclic drainage and imbibition
Open Geomechanics, Volume 3 (2022), article no. 5, 33 p.

The water retention curve (WRC) represents a key function in unsaturated soil mechanics as it can be applied for the modeling of the hydro-mechanical behaviour of unsaturated soils. The macroscopic WRC is characterised by different phenomena, such as hysteresis upon cyclic drainage and imbibition. With the help of modern X-ray computed tomography and hydraulic experiments that can be performed in a CT scanning environment, so-called in situ CT experiments, we image cyclic drainage and imbibition in a sand on the pore scale in order to quantitatively measure and study the change of microstructure and capillary state variables, characterising capillary effects in unsaturated granular soils. The measured pore scale data can then be related to the macroscopic WRC. To our knowledge, for the first time very different capillary state variables, such as interfacial areas, contact lines and contact angles, could be extensively measured in high detail for various hydraulic cycles in our experiment. Besides the experimental procedure, the wealth of measured data will be comprehensively presented and discussed and finally shared with the research community.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/ogeo.13
Mots-clés : Unsaturated granular soils, Water retention behaviour, Transient flow experiments, X-ray computed tomography
Milatz, Marius 1; Andò, Edward 2; Viggiani, Gioacchino 3; Mora, Serge 4

1 Hamburg University of Technology (TUHH), Institute of Geotechnical Engineering and Construction Management, Harburger Schloßstraße 36, 21079 Hamburg, Germany
2 École Polytechnique Fédérale de Lausanne (EPFL), EPFL Center for Imaging, Lausanne, Switzerland
3 Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, 38000 Grenoble, France
4 Université de Montpellier and CNRS, Laboratoire de Mécanique et Génie Civil, Montpellier, France
License: CC-BY-NC-SA 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{OGEO_2022__3__A5_0,
     author = {Milatz, Marius and And\`o, Edward and Viggiani, Gioacchino and Mora, Serge},
     title = {In situ {X-ray} {CT} imaging of transient water retention experiments with cyclic drainage and imbibition},
     journal = {Open Geomechanics},
     eid = {5},
     pages = {1--33},
     publisher = {Alert Geomaterials},
     volume = {3},
     year = {2022},
     doi = {10.5802/ogeo.13},
     language = {en},
     url = {https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.13/}
}
TY  - JOUR
AU  - Milatz, Marius
AU  - Andò, Edward
AU  - Viggiani, Gioacchino
AU  - Mora, Serge
TI  - In situ X-ray CT imaging of transient water retention experiments with cyclic drainage and imbibition
JO  - Open Geomechanics
PY  - 2022
SP  - 1
EP  - 33
VL  - 3
PB  - Alert Geomaterials
UR  - https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.13/
DO  - 10.5802/ogeo.13
LA  - en
ID  - OGEO_2022__3__A5_0
ER  - 
%0 Journal Article
%A Milatz, Marius
%A Andò, Edward
%A Viggiani, Gioacchino
%A Mora, Serge
%T In situ X-ray CT imaging of transient water retention experiments with cyclic drainage and imbibition
%J Open Geomechanics
%D 2022
%P 1-33
%V 3
%I Alert Geomaterials
%U https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.13/
%R 10.5802/ogeo.13
%G en
%F OGEO_2022__3__A5_0
Milatz, Marius; Andò, Edward; Viggiani, Gioacchino; Mora, Serge. In situ X-ray CT imaging of transient water retention experiments with cyclic drainage and imbibition. Open Geomechanics, Volume 3 (2022), article  no. 5, 33 p. doi : 10.5802/ogeo.13. https://opengeomechanics.centre-mersenne.org/articles/10.5802/ogeo.13/

[1] ASTMD6836-16 Standard Test Methods for Determination of the Soil Water Characteristic Curve for Desorption Using Hanging Column, Pressure Extractor, Chilled Mirror Hygrometer, or Centrifuge., ASTM International, 2016

[2] Andrew, M.; Bijeljic, B.; Blunt, M. J. Pore-scale contact angle measurements at reservoir conditions using X-ray microtomography., Advances in Water Resources, Volume 68 (2014), pp. 24-31 | DOI

[3] Armstrong, R. T.; Porter, M. L.; Wildenschild, D. Linking pore-scale interfacial curvature to column-scale capillary pressure., Advances in Water Resources, Volume 46 (2012), pp. 55-62 | DOI

[4] AlRatrout, A.; Raeini, A. Q.; Bijeljic, B.; Blunt, M. J. Automatic measurement of contact angle in pore-space images., Advances in Water Resources, Volume 109 (2017), pp. 158-169 | DOI

[5] User’s Guide Avizo Software 2019, https://assets.thermofisher.com/TFS-Assets/MSD/Product-Guides/users-guide-avizo-software-2019.pdf, 2019 (Accessed: 2022-07-09)

[6] Bear, J. Hydraulics of groundwater, New York: Mc Graw-Hill (Mc Graw-Hill Series in Water Resources and Environmental Eng.), 1979

[7] Blunt, M. J. Multiphase Flow in Permeable Media: A Pore-Scale Perspective, Cambridge University Press, 2017 | DOI

[8] Culligan, K. A.; Wildenschild, D.; Christensen, B. S. B.; Gray, W. G.; Rivers, M. L.; Tompson, A. F. B. Interfacial area measurements for unsaturated flow through a porous medium., Water Resources Research, Volume 40 (2004) | DOI

[9] de Gennes, P.-G.; Brochard-Wyart, F.; Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves., Springer, 2004 | DOI

[10] Diamantopoulos, E.; Durner, W. Dynamic nonequilibrium of water flow in porous media: A review., Vadose Zone Journal, Volume 11 (2012) | DOI

[11] Fredlund, D. G.; Rahardjo, H. Soil mechanics for unsaturated soils, John Wiley & Sons, 1993 | DOI

[12] Gastal, Eduardo S. L.; Oliveira, Manuel M. Adaptive Manifolds for Real-Time High-Dimensional Filtering, ACM Trans. Graph., Volume 31 (2012) no. 4 | DOI

[13] Gray, W. G.; Schrefler, B. A.; Pesavento, F. The solid phase stress tensor in porous media mechanics and the Hill–Mandel condition., Journal of the Mechanics and Physics of Solids, Volume 57 (2009), pp. 539-554 | DOI | MR | Zbl

[14] Haines, W. B. Studies in the physical properties of soil: V. The hysteresis effect in capillary properties and the modes of moisture distribution associated therewith., Journal of Agricultural Science, Volume 20 (1930), pp. 97-116 | DOI

[15] Hassanizadeh, S. M.; Celia, M. A.; Dahle, H. K. Dynamic Effect in the Capillary Pressure-Saturation Relationship and its Impacts on Unsaturated Flow., Vadose Zone Journal, Volume 1 (2002), pp. 38-57 | DOI

[16] Hassanizadeh, S. M.; Gray, W. G. Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries., Advances in Water Resources, Volume 13 (1990), pp. 169-186 | DOI

[17] Hassanizadeh, S. M.; Gray, W. G. Thermodynamic basis of capillary pressure in porous media., Water Resources Research, Volume 29 (1993), pp. 3389-3405 | DOI

[18] Higo, Y.; Morishita, R.; Kido, R.; Khaddour, G.; Salager, S. Local water-retention behaviour of sand during drying and wetting process observed by micro x-ray tomography with trinarisation., Japanese Geotechnical Society Special Publication, Volume 2 (2015), pp. 635-638 | DOI

[19] Jones, A. C.; Arns, C. H.; Sheppard, A. P.; Hutmacher, D. W.; Milthorpe, B. K.; Knackstedt, M. A. Assessment of bone ingrowth into porous biomaterials using MICRO-CT., Biomaterials, Volume 28 (2007) https://www.sciencedirect.com/science/article/abs/pii/S0142961207001287 | DOI

[20] Jiang, Y.; Einav, I.; Liu, M. A thermodynamic treatment of partially saturated soils revealing the structure of effective stress., Journal of the Mechanics and Physics of Solids, Volume 100 (2017), pp. 131-146 | DOI | MR

[21] Khaddour, G. Multi-scale characterisation of the hydro-mechanical behaviour of unsaturated sand: water retention and triaxial responses, Ph.D. thesis, Laboratoire 3SR, Université Grenoble Alpes (2015)

[22] Kido, R.; Higo, Y.; Takamura, F.; Morishita, R.; Khaddour, G. Morphological transitions for pore water and pore air during drying and wetting processes in partially saturated sand., Acta Geotechnica, Volume 15 (2020), pp. 1745-1761 | DOI

[23] Kim, F. H.; Penumadu, D.; Gregor, J.; Kardjilov, N. High-Resolution Neutron and X-Ray Imaging of Granular Materials., Journal of Geotechnical and Geoenvironmental Engineering, Volume 139 (2013) | DOI

[24] Khaddour, G.; Riedel, I.; Andò, E.; Charrier, P.; Bésuelle, P.; Desrues, J.; Viggiani, G.; Salager, S. Grain-scale characterization of water retention behaviour of sand using X-ray CT., Acta Geotechnica (2018) | DOI

[25] Lu, N.; Godt, J. W.; Wu, D. T. A closed-form equation for effective stress in unsaturated soil., Water Resources Research, Volume 46 (2010) | DOI

[26] Lins, Y. Hydro-mechanical properties of partially saturated sand., Dissertation, Faculty of Civil Engineering, University Bochum (2009)

[27] Milatz, M.; Andò, E.; Viggiani, G. Data from in situ X-ray CT imaging of transient water retention experiments with cyclic drainage and imbibition., TUHH Open Research (TORE), Hamburg University of Technology, 2022 | DOI

[28] Mirzaei, M.; Das, D. B. Experimental Investigation of Hysteretic Dynamic Effect in Capillary Pressure-Saturation Relationship for Two-Phase Flow in Porous Media., AIChE Journal, Volume 59 (2013), pp. 3958-3974 | DOI

[29] Milatz, M., Proc. of 6th Asia-Pacific Conference on Unsaturated Soils (AP-UNSAT 2015), Guilin, China (2015), pp. 211-216

[30] Milatz, M. An automated testing device for continuous measurement of the hysteretic water retention curve of granular media., Acta Geotechnica (2020) | DOI

[31] Manahiloh, K. N.; Meehan, C. L. Determining the Soil Water Characteristic Curve and Interfacial Contact Angle from Microstructural Analysis of X-Ray CT Images., Journal of Geotechnical and Geoenvironmental Engineering, Volume 143 (2017) | DOI

[32] Milatz, M.; Törzs, T.; Grabe, J., Proc. of 7th International Conference on Unsaturated Soils (UNSAT 2018), Volume 1 (2018), pp. 355-360 http://gcf-conf.ust.hk/unsat2018/paper/pdf/1b-6.UNSAT2018_038.pdf

[33] Milatz, M.; Törzs, T.; Nikooee, E.; Hassanizadeh, S. M.; Grabe, J. Theoretical and experimental investigations on the role of transient effects in the water retention behaviour of unsaturated granular soils., Geomechanics for Energy and the Environment, Volume 15 (2018), pp. 54-64 | DOI

[34] Nikooee, E.; Habibagahi, G.; Hassanizadeh, S. M.; Ghahramani, A. Effective Stress in Unsaturated Soils: A Thermodynamic Approach Based on the Interfacial Energy and Hydromechanical Coupling, Transport in Porous Media, Volume 96 (2013), pp. 369-396 | DOI

[35] Peters, A.; Durner, W. Simplified evaporation method for determining soil hydraulic properties., Journal of Hydrology, Volume 356 (2008), pp. 147-162 | DOI

[36] Porter, M. L.; Schaap, M. G.; Wildenschild, D. Lattice-Boltzmann simulations of the capillary pressure-saturation-interfacial area relationship for porous media., Advances in Water Resources, Volume 32 (2009), pp. 1632-1640 | DOI

[37] Stamati, Olga; Andò, Edward; Roubin, Emmanuel; Cailletaud, Rémi; Wiebicke, Max; Pinzon, Gustavo; Couture, Cyrille; Hurley, Ryan C.; Caulk, Robert; Caillerie, Denis; Matsushima, Takashi; Bésuelle, Pierre; Bertoni, Félix; Arnaud, Tom; Laborin, Alejandro Ortega; Rorato, Riccardo; Sun, Yue; Tengattini, Alessandro; Okubadejo, Olumide; Colliat, Jean-Baptiste; Saadatfar, Mohammad; Garcia, Fernando E.; Papazoglou, Christos; Vego, Ilija; Brisard, Sébastien; Dijkstra, Jelke; Birmpilis, Georgios ‘spam‘: Software for Practical Analysis of Materials, Journal of Open Source Software, Volume 5 (2020) no. 51, p. 2286 | DOI

[38] Schlüter, S.; Berg, S.; Rücker, M.; Armstrong, R. T.; Vogel, H.-J.; Hilfer, R.; Wildenschild, D. Pore-scale displacement mechanisms as a source of hysteresis for two-phase flow in porous media., Water Resources Research, Volume 52 (2016), pp. 2194-2205 | DOI

[39] Tengattini, A.; Lenoir, N.; Andò, E.; Viggiani, G. Neutron imaging for geomechanics: A review., Geomechanics for Energy and the Environment, Volume 27 (2021) | DOI

[40] Tuller, M.; Or, D. Hydraulic conductivity of variably saturated porous media: Film and corner flow in angular pore space., Water Resources Research, Volume 37 (2001), pp. 1257-1276 | DOI

[41] Tuller, M.; Or, D.; Dudley, L. M. Adsorption and capillary condensation in porous media: Liquid retention and interfacial configurations in angular pores., Water Resources Research, Volume 35 (1999), pp. 1949-1964 | DOI

[42] Thakur, M. M.; Penumadu, D.; Bauer, C. Capillary suction measurements in granular materials and direct numerical simulations using X-ray computed tomography microstructure., Journal of Geotechnical and Geoenvironmental Engineering, Volume 146 (2020) | DOI

[43] UMS HYPROP operation manual, http://library.metergroup.com/Manuals/UMS/Hyprop_Manual.pdf, 2018 (Accessed: 2020-05-18)

[44] Viggiani, G.; Andò, E.; Takano, E.; Santamarina, J. C. Laboratory X-ray Tomography: A Valuable Experimental Tool for Revealing Processes in Soils., Geotechnical Testing Journal, Volume 38 (2015) | DOI

[45] Vanapalli, S. K.; Nicotera, M. V.; Sharma, R. S. Axis translation and negative water column techniques for suction control., Geotechnical and Geological Engineering, Volume 26 (6) (2008), pp. 645-660 | DOI

[46] Wadell, H. Volume, Shape and Roundness of Quartz Particles., Journal of Geology, Volume 43 (1935), pp. 250-280 https://www.jstor.org/stable/30056250 | DOI

[47] Wildenschild, D.; Hopmans, J. W.; Kent, A. J. R.; Rivers, M. L. Quantitative analysis of flow processes in a sand using synchrotron-based x-ray microtomography., Vadose Zone Journal, Volume 4 (2005), pp. 112-126 | DOI

[48] Wildenschild, D.; Hopmans, J. W.; Vaz, C. M. P.; Rivers, M. L.; Rikard, D.; Christensen, B. S. B. Using X-ray computed tomography in hydrology: systems, resolutions, and limitations., Journal of Hydrology, Volume 267 (2002), pp. 285-297 | DOI

[49] Wang, J.; Lambert, P.; De Kock, T.; Cnudde, V.; François, B. Investigation of the effect of specific interfacial area on strength of unsaturated granular materials by X-ray tomography., Acta Geotechnica, Volume 14 (2019), pp. 1545-1559 | DOI

[50] Zhuang, L. Advanced Theories of Water Infiltration and Redistribution in Porous Media; Experimental Studies and Modeling, PhD thesis,, Utrecht University, Utrecht, Netherlands (2017)

[51] DFG Research Training Group GRK 2462: Processes in natural and technical Particle-Fluid-Systems (PintPFS), http://gepris.dfg.de/gepris/projekt/390794421?language=en, 2019 (Accessed: 2019-04-29)

[52] FiJi (Fiji Is Just ImageJ), open-source image processing package for ImageJ, https://imagej.net/Fiji, 2022 (Accessed: 2020-06-18)

Cited by Sources: